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Abstract

We document new findings on within-region volatility of returns to residential hous-
ing in the United States. Lower-income zip codes have more volatile returns to housing
than do higher income zip codes, without any corresponding higher returns. We ra-
tionalize these findings with a simple model that features a collateral constraint on
borrowing and non-homothetic preferences over housing and other consumption. In
our model, shocks to the representative household’s marginal rate of substitution lead
to volatility in the return to housing via the collateral constraint. We argue that
poorer households have a more volatile marginal rate of substitution than wealthier
households. As a result, areas populated by lower-income households should also have
more volatile returns to housing, consistent with our empirical findings. We provide
further evidence for our mechanism using variation in lagged housing returns, using
data on the housing expenditure share, and using state-level non-recourse status as an
instrument for the strictness of collateral constraints.
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Introduction

The topic of housing affordability is generally framed through either the level or the

growth rate of real estate values, compared with income. For example, popular housing

affordability indices compare household income with the level of real estate values, while

homeownership subsidies focus on wealth accumulation via the growth in those values. We

argue that the second moment – the volatility of housing returns – is also important to

understand the homeownership decisions of low-income households.

We begin with a theoretical analysis of the causes of housing return volatility that rests

on the interaction of two key features of housing as an asset class: first, the use of housing

as collateral for borrowing; and second, the non-homotheticity of preferences over housing

and other consumption. Both features have been documented and studied previously, but

our contribution is to show that they combine to produce endogenous volatility in home

prices. Importantly, this effect strengthens as wealth falls: housing return volatility is larger

for poorer households.

Our model consists of a representative household endowed with a risky income stream.

This household derives utility from durable housing and other consumption and has access to

a market for Arrow-Debreu (AD) securities. For simplicity, we do not model the preferences

of other agents in this market and rather assume they are risk-neutral and employ some

exogenous risk-free rate. We assume that the representative household is impatient relative

to the AD market and thus would like to borrow.

The price of housing in our model is the present value of the marginal rate of substitution

(MRS) between housing and other consumption at all dates. We assume the representative

household has non-homothetic preferences over housing and other consumption and as a

result, the price for housing can respond to income shocks through a change in her MRS.

Absent any frictions, the representative household would trade in the AD market and smooth

income shocks so that her MRS, and hence the price of housing, would remain constant.

Finally, we assume the household faces a standard borrowing constraint. Specifically,
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the household can sell standard AD securities so long as each claim is directly collateralized

by its position in housing. This constraint means that the household cannot fully smooth

consumption, and thus its MRS will fluctuate over time, producing volatility in the return

to housing. The extent to which volatility in the MRS between housing and consumption

translates to to volatility in housing returns depends on the extent to which housing can

be collateralized. If the household is more constrained – that is, if it can borrow a smaller

fraction of the value of its house – volatility in its MRS has a larger effect on the volatility

of housing returns.

A key prediction of our model is that housing markets will have different volatilities of

housing returns depending on the volatility of the MRS of households in that market. Under

a standard specification of non-homethetic preferences, households with lower incomes have

a higher volatility of the MRS between housing and other consumption. Our model then

predicts that lower-income households experience more-volatile housing returns.

We corroborate this novel prediction empirically by measuring home price volatility

within zip codes. To our knowledge, no previous paper studies home price volatility at

this fine a level of disaggregation. We demonstrate that low-income zip codes feature consis-

tently higher return volatilities, with no compensating increase in the level of their return.

This novel finding holds across two data sources (CoreLogic and Zillow), and within each

of the largest metropolitan statistical areas (MSAs) in the United States. In our main re-

sult, a doubling of annual income is associated with 1.3% less annual volatility in housing

returns when that volatility is measured with CoreLogic data, or 2.7% less annual volatility

when mesaured with Zillow data. Importantly, returns are not any higher in the low-income,

high-volatility zip codes.

To rule out other forms of cross-sectional variation, we show that within zip code, lagged

income changes have the same association with volatility, even controlling for state, MSA, or

zip-code fixed effects. Housing exenditure share, a more direct measure of wealth effects, also

has a strongly positive relationship with volatility for the 28 MSAs in which it is available,
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as predicted by our model. We conclude that the first of the two key mechanisms of our

model, a wealth effect in willingness to pay for housing, has significant explanatory power

for housing return volatility in the data.

Finally, we offer evidence on the second mechanism of our model, binding collateral con-

straints. To proxy for the tightness of collateral constraints, we measure the state-level

degree of lender recourse, following the coding of Ghent and Kudlyak (2011). Controlling

for the direct effect of wealth, we find that states allowing a lesser degree of recourse also

have greater volatility, and that this finding is robust to including various demographic char-

acteristics. The prior research on lender non-recourse laws emphasizes that they constrain

access to credit, but outside the argument captured by our model, it is difficult to imagine

why they should increase the volatility of home price returns. That volatility seems to be

affected by a significant interaction between wealth effects and collateral constraints.

Our model of the housing market builds on the literature that emphasizes the importance

of collateral constraints for asset markets. Kiyotaki and Moore (1997) show how the presence

of collateral constrained agents can amplify fundamental shocks in asset markets. Many

studies have demonstrated the importance of this effect in real estate markets. For example

Lamont and Stein (1999) and Almeida, Campello, and Liu (2006) demonstrate that house

prices are more sensitive to shocks to economic fundamentals in locations in which households

are more highly levered.

More recently Justiniano, Primiceri, and Tambalotti (2015) study a model similar to

Kiyotaki and Moore (1997) to show that collateral constraints can quantitatively explain

many features of the housing boom and bust of the 2000’s. Our model is similar in spirit to

Justiniano et al. (2015), but bears closer resemblance to that of Rampini and Viswanathan

(2010) and Rampini and Viswanathan (2013).

To our knowledge, ours is the first model to integrate non-homethetic prefences into a

dynamic model of house prices with collateral constraints. However, such preferences have

been emphasized as an important driver of real estate markets. Notably, Albouy, Ehrlich,
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and Liu (2016) show that non-hometheticity can help explain the secular trend in housing

expenditure shares.

There is also a body of evidence that shows that credit constraints can have an important

impact on house prices. Ben-David (2011) shows that financially constrained borrowers

inflated house prices in order to draw larger mortgages. Ortalo-Magne and Rady (2006)

highlight how young households’ leverage in their first home can have an important effect

on the volatility of house prices.

Housing as a source of collateral has also been shown to have important implications for

the broader economy. Lustig and Van Nieuwerburgh (2005) show that the use of housing

as collateral affects the market price of risk and that the ratio of housing wealth to human

wealth can explain the cross section of stock returns. Mian and Sufi (2011) provide evidence

that increased home equity during the early 2000’s allowed for an increase in borrowing and

the subsequent default crisis of the late 2000’s.

1 Model

In this section, we present a model in which volatility in returns to housing arises due

to the combination of non-homothetic preferences and collateral constraints. Our model

of collateralized borrowing is similar to that in Justiniano et al. (2015) and Rampini and

Viswanathan (2010), and like them we create demand for borrowing via an impatient agent

(as also in Kiyotaki and Moore (1995)). We shut down the equilibrium determination of

the risk-free rate, while allowing for non-homothetic preferences over housing captured by a

dynamically evolving marginal rate of substitution (MRS) with consumption.

A representative household values consumption and housing according to the utility func-

tion u(ct, ht), and discounts future consumption at rate β. The household’s endowment in-

come can take on two values, y1 or y2. This is the only fundamental source of uncertainty in

the model, and we index these states by s ∈ {1, 2}. After realizing its income y, the house-
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hold repays obligations made last period b̄(s) that depend on the realization of the current

state. The household then chooses housing consumption ht+1, and borrows again by making

new state-contingent repayment promises for tomorrow. The price of the consumption good

is normalized to 1.

The risk-free rate Rf < 1/β is exogenously determined by deep-pocketed lenders who

are outside of the model, and the impatient household borrows as much as possible given

that rate. However, a collateral constraint limits this borrowing: To borrow today, the

household must make state-contingent promises of repayment tomorrow. Specifically, we

follow Rampini and Viswanathan (2010) by assuming that the household can only promise

to pay up to fraction θ of the value of the house in a given state. Today, it can effectively

only borrow up to the discounted expected value of that future repayment capacity. This

constraint can be motivated by assuming that loans are subject to limited enforcement.

The household’s problem can be summarized as

max
ct,ht,bt

E

[∑
t

βtu(ct, ht)

]
(1)

s.t. ct + ptht ≤ Wt + bt (2)

Wt+1(st+1) ≡ yt+1(st+1)− b̄t(st+1) + htpt+1(st+1), (3)

b̄t(st+1) ≤ θhtpt+1(st+1), (4)

bt =
E[b̄t(st+1)]

Rf

. (5)

Equations (2)-(3) jointly characterize the budget constraint, and equation (4) is the collateral

constraint. The household makes state-contingent repayment promises b̄ which can’t be any

more than the value of housing in those states. Equation (5) is a lender optimality condition:

The upfront loan proceeds b are equal to the discounted value of those state-contingent

promises.

We simplify the problem in two steps. First, we note that constraint (4) will always bind
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since this household is impatient and will always borrow the maximum possible, so we set it

to equality and substitute it into the definition of Wt+1 and into the final condition defining

bt. Second, we substitute that final condition into the RHS of the budget constraint. The

first-order condition for h then yields

pt =
u2(ct, ht)

u1(ct, ht)
+

θ

Rf

E[pt+1]

As is intuitive, the housing price reflects the contemporaneous marginal rate of substitu-

tion with consumption (whose price is normalized to 1) plus the extra value derived from the

ability to borrow up to the LTV constraint captured by θ and computed based on tomorrow’s

housing price. We can iterate this forward to get

pt =
∞∑
τ=0

(
θ

Rf

)τ
Et
[
u2(ct+τ , ht+τ )

u1(ct+τ , ht+τ )

]
.

The above expression illustrates how home prices in our model are determined by the inter-

play between borrowing capacity and a dynamic MRS with consumption.

To study log returns, as we will do the empirical section, we can use the identity

ln(Rt+1) = ln

(
pt+1

pt

)
= ln

(
MRSt+1

MRSt

)
+ ln

(
pt+1

MRSt+1

/
pt

MRSt

)
,

where MRSt ≡ u2(ct,ht)
u1(ct,ht)

. We can rewrite the price equation as

pt
MRSt

=
∞∑
τ=0

(
θ

Rf

)τ
Et
[
MRSt+τ
MRSt

]
, (6)

so that the equilibrium dynamics of prices are given by the equilibrium dynamics of MRS.

Moreover, the dynamics of the income process y, give rise to the equilibrium dynamics

for MRS. However, rather than fully solving for equilibrium, we simplify the analysis by

assuming particularly tractable dynamics for MRS. To that end, we assume that MRS can
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only take one of two values, MRSL < MRSH , and let γ ≡ MRSH

MRSL
> 1. We also assume

a symmetric transition matrix between these two realizations, with probability p > 1/2 of

staying in either of the states and probability 1− p of transitioning to the other. It is then

easily verified that the probability at time t of being in the same state at time t + τ is

1
2

+ 1
2

(2p− 1)τ . Then, if MRSt = MRSL,

Et
[
MRSt+τ
MRSt

]
=

(
1

2
+

1

2
(2p− 1)τ

)
γ +

(
1

2
− 1

2
(2p− 1)τ

)
=

1

2
(γ + 1) +

1

2
(2p− 1)τ (γ − 1)

while if MRSt = MRSH ,

Et
[
MRSt+τ
MRSt

]
=

(
1

2
+

1

2
(2p− 1)τ

)
1

γ
+

(
1

2
− 1

2
(2p− 1)τ

)
,

=
1

2

(
1

γ
+ 1

)
+

1

2
(2p− 1)τ

(
1

γ
− 1

)
.

Applying equation (6), and summing over τ yields: If MRSt = MRSL,

pL

MRSL
=

1

2

(
γ + 1

1− θ
Rf

+
γ − 1

1− θ
Rf

(2p− 1)

)
,

while if MRSt = MRSH ,

pH

MRSH
=

1

2

(
1
γ

+ 1

1− θ
Rf

+

1
γ
− 1

1− θ
Rf

(2p− 1)

)
.

Thus, whenever the state stays the same (with probability p), the price of housing is

constant and the return on housing is zero. When the state changes (with probability 1−p),

the log return is ln(R̄) if we transition from H to L, and − ln(R̄) if we transition from L to
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H, where

R̄ ≡

1− θ
Rf

(2p−1)

1− θ
Rf

+ γ−1
γ+1

1− θ
Rf

(2p−1)

1− θ
Rf

− γ−1
γ+1

≥ 1.

Finally, in the stationary distribution the probability is 1/2 of being in either state. This

implies that the stationary expected (log) return on housing is always zero; but there is

unconditional volatility in that return, given by

V ar(ln(R)) = (1− p)(ln R̄)2.

Comparative statics reveal that R̄, and therefore V ar(ln(R)), are decreasing in θ and in-

creasing in γ. Together, these two features capture the core narrative of our model: First,

γ captures the volatility of MRS. If MRS is constant, as in many prior models, then γ = 1,

which in turn leads to R̄ = 1 and zero return volatility. On the other hand, if the MRS

is volatile, then returns are volatile as well. However, the volatility generated by γ > 1

also depends on the degree of financial constraints, captured by the maximum LTV ratio θ.

Indeed, the highest value of R̄, and thus return volatility, obtains when θ = 0 (when the

constraint is most binding, and there is no ability to borrow against the house at all). In

this case, the price of housing is always the contemporaneous MRS, and R̄ = γ, reflecting

the transition between low and high MRS states. On the other hand, as θ increases, moving

us towards a model with no financial constraints, then volatility falls.

To connect this model to the data, imagine a comparative static on the average level

of income. This falls outside our formal analysis, as we do not explicitly solve for MRS.

However, it should be clear that a decrease in income, and thus lifetime wealth, generally

leads to a higher volatility in marginal utility for a risk-averse household, as its average level

of consumption will be lower, and thus will fall in the more-concave region of its utility

function. This means low-income households will face larger disparities between high- and

low-MRS states, which manifests in higher values of γ in our model. The end result is that,
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in the presence of borrowing constraints, the financial returns to housing are endogenously

more volatile for low-income households, which in turn will affect their investment and

consumption decisions. (Note that we have assumed no frictions in the lending market other

than the limited borrowing capacity of the impatient household.) The next section turns to

an empirical analysis of this prediction.

2 Data and measurement

The goal of this section is to demonstrate that the central prediction of the model – the

volatility of housing returns is higher for lower-income households – is empirically present,

quantitatively large, and a robust feature across many distinct housing markets. We disag-

gregate our analysis at a fine geographical level by measuring income and housing returns

within Metropolitan Statistical Areas (MSAs), using variation by zip code.1

To measure housing returns, and the volatility of those returns, we obtain home price data

from two alternative sources. The first is the CoreLogic Single Family Combined Home Price

Index (HPI), which is the standard in much real estate research. The second is the Zillow

Home Value Index (ZHVI), a newer and less-used dataset. Our results are qualitatively

similar with either index, but are more stark using the Zillow than the CoreLogic data. The

primary difference between the two, which likely explains this discrepancy, is that CoreLogic

is based on a repeat-sales methodology, capturing innovations to a home’s value only when

that home is actually sold. In contrast, Zillow’s ZHVI uses hedonic regressions to update

the value of all homes in a region in response to each transaction price.

For either the HPI or ZHVI, we use the time series for each zip code to construct two

cross-sectional variables: the average 12-month return in home prices, and the standard

1To be clear, zip codes are not themselves geographical concepts. Our references to zip codes throughout
the paper are actually to Zip Code Tabulation Areas (ZCTAs), which are constructed by the US Census as
geographic partitions of the United States that roughly correspond to actual zip codes.
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deviation of that return. Specifically, for region z, we calculate

rannz,t = ln

(
pz,t+12

pz,t

)
,

r̄annz =
1

T

T∑
t=0

rannz,t ,

σ̄annz =

√√√√ 1

T − 1

T∑
t=0

(
rannz,t − r̄annz

)2
.

where t indexes months from January 1976 (t = 0) to October 2015 (t = T ), and p is the

zip-code-month level of the specific index employed.

Finally, to measure household income, we obtain from the IRS zip-code-level statistics

on Adjusted Gross Income (AGI) as reported in tax returns. These statistics are available at

irregular frequencies beginning in 1998. For each zip code, the IRS reports both the number

of tax returns, and the total AGI reported summing across all returns, so we divide the two

to obtain a mean AGI per household for each zip code. We use the 1998 cross-section of

AGI, the earliest available observations, as the measure of household income throughout our

analysis. Because our home price data begin long before 1998, it is important to note that

our results are robust to using just post-1998 home prices, alleviating concerns about reverse

causality from housing returns to income.

Our analysis is performed on the cross-section of 5,573 zip codes that have non-missing

CoreLogic and Zillow indices for every month from 1998-2014. Figure 1 shows the distribu-

tion of average returns and return volatilies across these zip codes, comparing the numbers

from the CoreLogic and the Zillow data. Figure 2 shows scatter plots of the CoreLogic and

Zillow values against each other for a given zip code. While the average housing return

within a zip code calculated using either index appears roughly the same, the volatility of

that return can be dramatically different between the two, with the Zillow volatilities typi-

cally lower and seeming to follow a skewed distribution, where the CoreLogic volatilities are

higher on average and symmetrically distributed. The discrepancy in the estimated volatil-
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ities is intriguing, especially given that the estimated returns are so similar, but for now we

simply use this as motivation to examine qualitative results based on both data sources.

3 Volatility and income

We first observe that the volatility of housing returns has a very different cross-sectional

distribution than the mean return. In particular, volatility is higher in lower-income areas.

Figure 3 separates zip codes into six bins by AGI, and plots volatilities (in Panel (a)) and

returns (in Panel (b)). Volatility in Panel (a) is noticeably higher for lower-income areas.

The spread in annual volatility between the lowest- and highest-AGI bins is roughly 2% in

the CoreLogic data and over 3.5% in the Zillow data. On the other hand, Panel (b) shows

that this higher volatility is not compensated in the data by higher returns. If anything,

returns seem to be slightly increasing in AGI, but there is no quantitatively meaningful

relationship.

Figure 4 looks for the same pattern using only within-MSA variation. Returns and

volatilities calculated with either index are adjusted by the MSA-level mean, and the six

bins are recalculated separately for each MSA, so that they capture relative income position

within-MSA instead of nationwide. Despite these adjustments, we see that the disparities in

volatility across bins remains sizeable. Using the CoreLogic data, the highest AGI bin has

1.3% lower annual return volatility than the lowest-AGI bin, with no meaningful difference

in annual return level. In the Zillow data, the disparity is larger, as before, at 2.88%. In

both cases we see a steady decline in return volatility across the bins from low to high AGI.

Tables 1 and 2 display regressions confirming that these findings are statistically signif-

icant and robust, using respectively the CoreLogic and the Zillow data. Instead of bins of

AGI, the logarithm of zip-code mean AGI is used as the independent variable in the regres-

sions, and all regressions include MSA fixed effects to preserve the within-MSA interpretation

of Figure 4. Finally, standard errors are clustered by state to allow for possible geographical
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clustering in the residuals.

Column (1) of each table performs this regression in the full sample of 5,573 zip codes.

The estimated coefficients suggest that a doubling of income is associated with 1.23% lower

annual housing return volatility as measured through CoreLogic data, or with 2.68% less

annual volatility as measured through Zillow. Column (2) of each table shows that this

result is not driven by relatively sparsely-populated MSAs; if anything, the estimated effects

strengthen slightly when the analysis is restricted to MSAs with at least a million 1998

tax returns. This reduces by about half the number of zip codes in the regression, but

the coefficients remain statistically significant. Meanwhile, Columns (3) and (4) of the table

reiterate that the higher volatility of housing returns in low-income zip codes is not associated

with higher average returns; if anything, the relationship is slightly in the opposite direction.

Aside from showing that volatility is a larger concern for lower-income households, these

findings can also be viewed as documenting a surprising disconnect between risk and expected

return in the housing market. Indeed, unreported regressions confirm that Sharpe ratios

of housing (average annualized return divided by annualized volatility) are dramatically

lower for low-income than high-income households. Our model can then be interpreted as a

resolution of this apparent puzzle: The interplay between financial constraints and volatile

marginal rates of substitution leads endogenously to uncompensated volatility in housing

returns for low-income neighborhoods.

Figure 5 demonstrates our central finding visually with zip-code maps of the largest three

MSAs in the sample, Los Angeles (Panel (a)), New York City (Panel (b)), and Chicago (Panel

(c)). These figures measure housing returns with the Zillow index, which yields the most

stark results. For all three panels, the left figure shades zip codes according to eight bins of

the volatility of the Zillow HVI return from 1997-2014, with darker shading corresponding

to more volatility. In Los Angeles, for example, the returns to housing have been most

volatile in poorer areas to the south and in the San Fernando valley. The right figure in each

panel shades zip codes according to eight bins of 1998 mean AGI, but with darker shading
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corresponding to lower income. The resemblance to the left figures in each panel is striking.

Put simply, high-volatility zip codes are also low-income zip codes.

Similar figures to Figure 5 can be constructed for every major MSA in the country

(available on request). To summarize the figures, Tables 3 and 4 perform the prior within-

MSA regression of return volatility on log AGI, explicitly breaking out each of the 16 largest

MSAs in the sample, and using (respectively) the CoreLogic index and the Zillow index to

measure housing returns. In all 32 specifications, the point-estimate of the coefficient on log

AGI is negative. In all but one, it is statistically significant, and in all but five it is less

than -1%. The negative relationship between income and return volatility appears to be a

fundamental feature of the market for housing.

4 Panel evidence

The results in the previous section were purely cross-sectional. Here we return to the

full zip-code-month panel and exploit the panel dimension to firm up our interpretation.

Our goal is to show that volatility responds to changes in wealth in the direction one would

expect based on our model. This exercise helps isolate our proposed mechanism from several

alternative interpretations, most importantly any omitted variables that are fixed in the

cross-section or that do not fluctuate with wealth.

Our instrument for household wealth is the lagged return of either of the two home value

indices. Intuitively, an individual observation of this high-frequency (monthly) return has

a persistent effect on the wealth of homeowners, and our model predicts that this wealth

effect should then alter the volatility of future housing returns. On the other hand, outside

of our proposed mechanism, there is no obvious reason for individual monthly returns to

have persistent effects on volatility. Thus, if high (low) individual monthly housing returns

predict low (high) future volatilities of monthly returns within the same zip code, we will

regard this as evidence of our proposed mechanism at work.
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To implement this logic, we calculate rolling volatility measures at the zip code level for

each of our two indices based on the prior 12 months of returns, starting in 1990. Using this

rolling volatility as our outcome variable, we regress on lags of the monthly return series.

To avoid using observations based on overlapping windows, we retain only January of every

year in these regressions, so the regression is performed on a zip-code-year panel, and we lag

the returns on the right-hand side by a year or more. Our results are presented in Tables 5

and 6.

Table 5 shows that housing returns negatively predict future volatility within a zip code.

Panel (a) uses the CoreLogic HPI series to measure housing returns and volatilities, and

Panel (b) uses the Zillow ZHVI series. In both cases, the coefficient on distributed lags

of the monthly housing return is significant and negative. The interpretation is that a

positive (negative) wealth shock, via a positive (negative) individual monthly housing return,

predicts a lower (higher) future degree of volatility in housing returns. Again, our model

explains this fact through the marginal rate of substitution between housing and non-housing

consumption, which changes as the agent becomes richer or poorer.2

The magnitudes are sizeable: In the first column of Panel (a), a one-standard-deviation

increase in the HPI return a year ago predicts a 0.10 standard deviation decrease in current

volatility of the HPI return, based on sample standard deviations of 0.0156 and 0.0045

respectively. Moreover, the dynamics of the effects decay as longer lags are used, which is

intuitive. Columns 2 through 4 show that the magnitudes of the coefficients are virtually

unchanged when including state, MSA, and finally zip-code fixed effects. In Panel (b), the

Zillow series exhibits the same qualitative effects, although the magnitudes are about half as

large: A one-standard-deviation increase in ZHVI return a year ago predicts a 0.04 standard

deviation decrease in current volatility, based on sample standard deviations of 0.0097 and

0.0038 respectively.

We can pin down our interpretation even further by exploiting cross-sectional variation

2Formally, a negative wealth shock leads to an increase in γ, the ratio of high to low MRS, and the
comparative statics of the model show that this increases housing return volatility.

14



in household income, as in the previous section. A change in housing value should have a

proportionally bigger effect among households that are poorer to begin with, and therefore

should lead to a larger subsequent effect on volatility. Thus, we expect that the magnitude

of the coefficients from Table 5 should be relatively higher in low-income zip codes, and

relatively lower among high-income zip codes. Indeed, Table 6 documents exactly this re-

lationship. This table repeats the analysis of Table 5, interacting all explanatory variables

with 1998 log AGI (the same measure of income employed in the previous section), after de-

meaning that variable across the full sample. (For compactness, only three lags are employed

instead of four).

For a household of average income, Table 6 continues to document the negative relation-

ship between housing return and future volatility that was reported in Table 5. However, a

significant and positive coefficient on the interaction with income indicates that the relation-

ship is stronger (weaker) for lower (higher) income households. With the CoreLogic data,

this interaction is rarely significant beyond a one-year lag, but with the Zillow data it shows

up two and even three years later. Again, our interpretation is that the wealth effect of a

monthly housing return is proportionally larger in areas with lower income (which proxies

for lower wealth). Our model then predicts that the relationship between housing return

and future volatility is stronger in lower-income areas, a prediction that is confirmed in the

data.

While we cannot rule out the possibility, we find it unlikely that there is a mechanism,

aside from a wealth effect, by which a low (high) monthly return observation should predict

higher (lower) future return volatility, and moreover for which this effect is moderated by

the cross-section of income. In sum, the dynamic patterns of within-zip-code volatility lend

support to our proposed mechanism by which wealth affects the volatility of housing returns.
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5 Volatility and housing expenditure share

When households have non-homothetic preferences over housing, income effects cause the

housing expenditure share to fall as wealth incresases (see Albouy et al. (2016)). In this

section we show that the housing share directly predicts volatility. We collapse to the cross-

section of zip codes that was used in the core results, rather than the panel from the previous

section, as our measures in this and the net section are primarily cross-sectional.

We use data from the Bureau of Labor Statistics’ 2003-2004 Consumer Expenditure

Survey, which provides characteristic spending patterns of households in 28 MSAs across

the country. While coarse in its aggregation, this dataset allows us to see how household

spending patterns correlate with volatility. Our key variable of interest is total expenditures

on housing, divided by the household’s total annual expenditures. This variable falls within

a tight range, between 0.3 and 0.4 for all 28 MSAs in the sample.

The results of this analysis are in Table 7. Column 1 demonstrates that a unit increase

in the housing expenditure share is associated with a 58 percentage point increase in return

volatility. For a better sense of magnitudes, the cross-sectional standard deviations of these

variables is about .024 and .038 respectively, so a one-standard-deviation increase in housing

share is associated with about a one-quarter standard deviation in return volatility. Column

2 shows that the effects are if anything stronger when we restrict only to expenditures on

owned (as opposed to rented) housing.

Like AGI in the previous sets of results, housing expenditure share is best regarded as

a proxy for γ in our model, capturing the wealth effect of non-homothetic preferences over

housing. In Column 3, we include both proxies at once to check that they have independent

explanatory power. Columns 4 and 5 repeat the previous results with state fixed effects.

Finally, Column 6 adds food expenditure share as an explanatory variable, showing that it

does not have the same power as housing to explain return volatility.

However, AGI and housing expenditure share may proxy not only for γ (via the marginal

rate of substitution that changes with wealth), but also for the degree of credit constraints
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θ, as lower-income households may also face tighter credit constraints. In the next section,

we attempt to disentangle these by seeking out variation in θ.

6 Volatility and constraints: Non-recourse states

The analysis so far shows, consistent with our model, that income and housing expendi-

ture share both predict housing return volatility. However, our model provides two different

mechanisms by which these relationships can arise. Low-wealth households likely feature

both greater volatility in MRS and tighter credit constraints, reflected in γ and θ respec-

tively. To help disentangle these mechanisms, we augment the regressions of the previous

section with variation in the tightness of the housing collateral constraint, measured in the

model by θ.

A commonly-explored source of such variation is the degree of lender recourse in the

case of default, which varies substantially around the country due to state laws adopted in

past decades, mostly in response to idiosyncratic circumstances (see Ghent (2014)). In some

states, notably Florida, lenders can pursue a deficiency judgment granting it a claim on the

borrower’s other assets; while in others, notably California, the lender must be satisfied with

foreclosure and sale of the house itself. Ex ante, this should limit the amount the household

can borrow as a fraction of its home value, leading in our model to a lower θ, a tighter

collateral constraint, and greater volatility in home price appreciation.

Our approach in this section is to regress return volatility on a measure of the state-level

degree of lender (non-)recourse. To classify states along this dimension, we employ employ

the coding of Ghent and Kudlyak (2011), who conduct a detailed reading of state-level

policies banning or hindering deficiency judgments against residential properties. Under their

coding, California, Washington, North Carolina, Arizona, Minnesota, Wisconsin, Oregon,

and Iowa are coded as non-recourse states.3

3In 2009, in the middle of our sample period, Nevada also passed an anti-deficiency law. See Li and
Oswald (2014) and Ghent (2014). We code Nevada as a recourse state, as in Ghent and Kudlyak (2011),
but our results are not meaningfully affected if we instead drop Nevada.
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We find that lender non-recourse is associated with much higher housing return volatility.

The results are presented in Table 8. Column 1 uses the non-recourse score as an explanatory

variable, controlling for the household expenditure share from the CEX data as in the pre-

vious section, in order to disentangle the wealth and constraint mechanisms. Non-recourse

states have a 3.2 percentage point higher return volatility, compared to a cross-sectional

standard deviation of 4.4 percentage points.

Since we cannot employ the tight fixed effects of our earlier specifications, we condition on

other characteristics to control for as much unobserved heterogeneity as possible. Column 2

adds our other wealth proxy, the zip-code median AGI. Column 3 adds the zip-code number

of tax returns filed with the IRS, and the fraction of residents who are black as recorded by

the Census. Finally, Column 4 excludes California, which is the largest of the non-recourse

states, and shows that the estimated coefficients barely change, although their standard

errors increase substantially.

In all these specifications, the estimated coefficients on non-recourse status, housing share,

and AGI remain consistent with the prior tables. The housing share coefficient decreases

slightly in statistical significance across these specifications, suggesting that the added pre-

dictors also have some power to proxy for the wealth effect operating through γ in our model,

but the non-recourse coefficient capturing the effect of θ remains roughly equally significant

as in Column 1.

To explore the effect of non-recourse status further, we observe that its effect in our model

should come through a reduction in realized credit, for which loan-to-value (LTV) is a good

proxy. We obtain from CoreLogic the zip-code level median LTV ratio, average this value

for each zip code throughout the sample period 1998-2014, and employ this average as an

outcome variable in Column 5. Non-recourse states have LTVs that are about 2 percentage

points lower on average, which is about one-third of the cross-sectional standard deviation.

This finding does not appear to be present in the literature, and substantiates the idea that

recourse status is important for credit availability, which in turn affects return volatility in
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our model.

Having shown that non-recourse status affects credit, which in turn affects volatility, a

natural step is to combine these effects in an instrumental-variables (IV) regression, translat-

ing their magnitudes into a marginal effect of an increased LTV on return volatility. Column

6 reports this IV regression. The estimated coefficient on LTV (just the ratio of those in

Columns 1 and 5) suggests that a percentage point increase in LTV would lower ZHVI return

volatility by 1.4 percentage points.

7 Conclusion

In this paper, we demonstrate empirically and theoretically that two widely-studied features

of housing – its collateral value for constrained households, and the non-homotheticity of

preferences over it – lead in equilibrium to greater volatility of home price appreciation for

low-income households, without any compensating increase expected return. Our theoretical

analysis assumes no frictions in mortgage markets beyond the limited borrowing capacity

of the impatient household. In fact, the model could likely be applied to a wide range

of durable goods, although housing is its natural setting. Likewise, our empirical analysis

did not focus on any particular time period (such as the housing boom or bust) nor on

any particular region. Our results thus capture a fundamental connection between financial

constraints and the return patterns of assets with collateral value in the presence of non-

homothetic preferences. Because housing is such a large fraction of expenditures for the

typical household, this is a quantitatively important pattern to understand for policy analysis

of the housing affordability problem.
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(a) Distribution of zip-code level averages of annualized log monthly returns, 1998-2015. The solid
blue bars are calculated using the CoreLogic Home Price Index, Single Family Combined series.
The black outlined bars are calculated using the Zillow Home Value Index.
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(b) Distribution of zip-code level volatilities of annualized log monthly returns, 1998-2015. The
solid blue bars are calculated using the CoreLogic Home Price Index, Single Family Combined
series. The black outlined bars are calculated using the Zillow Home Value Index.

Figure 1: Comparison of return and volatility distributions from CoreLogic and Zillow data.
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(a) Scatter plot of zip-code level average returns calculated using Zillow data against those calcu-
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(b) Scatter plot of zip-code level return volatilities calculated using Zillow data against those cal-
culated using CoreLogic data.

Figure 2: Comparison of return and volatility distributions from CoreLogic and Zillow data.
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(a) Zip-code level housing return volatility, 1998-2015, by bins of 1998 mean adjusted gross income
(AGI). Blue bars are calculated using CoreLogic data, and red bars using Zillow data.
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(b) Zip-code level average housing return, 1998-2015, by bins of 1998 zip code-level mean adjusted
gross income (AGI). Blue bars are calculated using CoreLogic data, and red bars using Zillow data.

Figure 3: Housing returns and volatilities across zip codes.
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(b) Zip-code level average housing return, 1998-2015, by bins of 1998 zip code-level mean adjusted
gross income (AGI). Blue bars are calculated using CoreLogic data, and red bars using Zillow data.
Returns are demeaned within-MSA, and the bins are also constructed within-MSA.

Figure 4: Housing returns and volatilities across zip codes, within-MSA.
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(1) (2) (3) (4)
HPI return vol HPI return vol HPI return HPI return

Ln(Mean AGI) -0.0129∗∗∗ -0.0128∗∗∗ -0.0000160 -0.00138
(0.00140) (0.00166) (0.00102) (0.00143)

Fixed effect MSA MSA MSA MSA
Sample All MSA pop 1M+ All MSA pop 1M+
Obs. 5438 2312 5438 2312
R2 0.0954 0.114 0.000000488 0.00393

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: In the first two columns, the dependent variable is σ̄annz , the volatility of the zip-
code-level annualized monthly log housing return. In the last two columns, the dependent
variable is r̄annz , the average of that return. Returns are measured using the CoreLogic Home
Price Index (Single Family Combined) for a cross-section of 5,573 zip codes from 1998-2014.
The explanatory variable is the natural logarithm of the zip code’s mean adjusted gross
income (AGI) from 1998, as reported by the IRS. Both variables are demeaned within-MSA,
and MSA fixed effects are also included. Standard errors are clustered by state. Columns
(2) and (4) restrict to MSAs in which one million or more tax returns were filed with the
IRS in 1998.

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return ZHVI return

Ln(Mean AGI) -0.0272∗∗∗ -0.0309∗∗∗ 0.00637∗∗∗ 0.00541∗∗

(0.00289) (0.00284) (0.00149) (0.00203)
Fixed effect MSA MSA MSA MSA
Sample All MSA pop 1M+ All MSA pop 1M+
Obs. 5438 2312 5438 2312
R2 0.280 0.342 0.0845 0.0554

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: In the first two columns, the dependent variable is σ̄annz , the volatility of the zip-
code-level annualized monthly log housing return. In the last two columns, the dependent
variable is r̄annz , the average of that return. Returns are measured using the Zillow Home
Value Index for a cross-section of 5,573 zip codes from 1998-2014 (that is, restricting to zip
codes that also have non-missing information in the CoreLogic HPI series). The explanatory
variable is the natural logarithm of the zip code’s mean adjusted gross income (AGI) from
1998, as reported by the IRS. Both variables are demeaned within-MSA, and MSA fixed
effects are also included. Standard errors are clustered by state. Columns (2) and (4)
restrict to MSAs in which one million or more tax returns were filed with the IRS in 1998.
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(a) Los Angeles.

(b) New York.

(c) Chicago.

Figure 5: Income and housing return volatility for the largest three MSAs. The three panels
on the left show the annualized zip-code level volatility of home price returns from 1998-2014,
based on Zillow data. Darker shading corresponds to higher volatility, using eight bins. The
three panels on the right show zip-code level 1998 adjusted gross income, again using eight
bins, but here darker shading corresponds to lower AGI.
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(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.0131∗∗∗ -0.0102∗∗∗ -0.00856∗∗∗ -0.0139∗∗∗

(0.00271) (0.00147) (0.00235) (0.00264)
Metro New York Los Angeles Chicago Philadelphia
Obs. 291 289 213 178
R2 0.0755 0.143 0.0594 0.136

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.00663∗∗∗ -0.0269∗∗∗ -0.0150∗∗∗ -0.0117∗∗∗

(0.00195) (0.00451) (0.00290) (0.00277)
Metro Miami Fort Lauderdale Atlanta Boston San Francisco
Obs. 155 142 147 113
R2 0.0700 0.203 0.156 0.138

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.0172∗∗∗ -0.00396 -0.0148∗∗∗ -0.0178∗∗∗

(0.00394) (0.00255) (0.00331) (0.00343)
Metro Detroit Seattle Riverside Phoenix
Obs. 132 112 95 89
R2 0.128 0.0215 0.177 0.237

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.0125∗∗∗ -0.00749∗ -0.0477∗∗∗ -0.0155∗∗∗

(0.00352) (0.00446) (0.00632) (0.00459)
Metro Minneapolis St Paul Tampa Baltimore Denver
Obs. 104 100 71 81
R2 0.110 0.0279 0.452 0.126

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Regressions of return volatility, based on CoreLogic data from 1998-2014, on 1998
mean household AGI, within each of the 16 largest MSAs in the sample.
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(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0240∗∗∗ -0.0342∗∗∗ -0.0193∗∗∗ -0.0196∗∗∗

(0.00208) (0.00256) (0.00274) (0.00221)
Metro New York Los Angeles Chicago Philadelphia
Obs. 291 289 213 178
R2 0.316 0.385 0.190 0.307

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0322∗∗∗ -0.0543∗∗∗ -0.0243∗∗∗ -0.0393∗∗∗

(0.00285) (0.00530) (0.00229) (0.00470)
Metro Miami Fort Lauderdale Atlanta Boston San Francisco
Obs. 155 142 147 113
R2 0.455 0.428 0.439 0.387

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0366∗∗∗ -0.00777∗∗∗ -0.0380∗∗∗ -0.0376∗∗∗

(0.00442) (0.00210) (0.00528) (0.00436)
Metro Detroit Seattle Riverside Phoenix
Obs. 132 112 95 89
R2 0.346 0.111 0.357 0.461

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0314∗∗∗ -0.0258∗∗∗ -0.0278∗∗∗ -0.0251∗∗∗

(0.00498) (0.00410) (0.00411) (0.00351)
Metro Minneapolis St Paul Tampa Baltimore Denver
Obs. 104 100 71 81
R2 0.280 0.288 0.398 0.392

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Regressions of return volatility, based on Zillow data from 1998-2014, on 1998 mean
household AGI, within each of the 16 largest MSAs in the sample.
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(1) (2) (3) (4)
HPI vol HPI vol HPI vol HPI vol

∆ ln(HPI) t− 12 -0.0374∗∗∗ -0.0352∗∗∗ -0.0357∗∗∗ -0.0365∗∗∗

(0.00790) (0.00742) (0.00750) (0.00774)
∆ ln(HPI) t− 24 -0.0241∗∗∗ -0.0231∗∗∗ -0.0234∗∗∗ -0.0241∗∗∗

(0.00572) (0.00535) (0.00530) (0.00553)
∆ ln(HPI) t− 36 -0.0122∗∗ -0.0115∗∗ -0.0117∗∗ -0.0123∗∗

(0.00506) (0.00484) (0.00486) (0.00518)
∆ ln(HPI) t− 48 -0.00807 -0.00669 -0.00774 -0.00945

(0.00903) (0.00881) (0.00878) (0.00926)
Fixed effect None State MSA Zip Code
Obs. 76467 76467 76467 76467
R2 0.0617 0.0848 0.129 0.0642

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) Using CoreLogic HPI

(1) (2) (3) (4)
ZHVI vol ZHVI vol ZHVI vol ZHVI vol

∆ ln(ZHV I) t− 12 -0.0166∗∗ -0.0222∗∗ -0.0221∗∗∗ -0.0216∗∗∗

(0.00713) (0.00824) (0.00796) (0.00795)
∆ ln(ZHV I) t− 24 -0.0182∗∗∗ -0.0173∗∗∗ -0.0174∗∗∗ -0.0171∗∗∗

(0.00318) (0.00324) (0.00311) (0.00315)
∆ ln(ZHV I) t− 36 -0.00872∗ -0.00855∗∗ -0.00827∗∗ -0.00821∗∗

(0.00472) (0.00384) (0.00387) (0.00383)
∆ ln(ZHV I) t− 48 0.0154 0.0113 0.0119 0.0117

(0.0111) (0.00948) (0.00975) (0.00975)
Fixed effect None State MSA Zip Code
Obs. 76467 76467 76467 76467
R2 0.0131 0.143 0.216 0.0231

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Using Zillow ZHVI

Table 5: Zip-code level panel regressions of housing return volatility (calculated on a rolling
basis with 12 months of data) on lags of monthly housing returns.
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(1) (2) (3) (4)
HPI vol HPI vol HPI vol HPI vol

∆ ln(HPI) t− 12 -0.0363∗∗∗ -0.0342∗∗∗ -0.0349∗∗∗ -0.0360∗∗∗

(0.00772) (0.00721) (0.00724) (0.00741)
∆ ln(HPI) t− 24 -0.0259∗∗∗ -0.0248∗∗∗ -0.0255∗∗∗ -0.0266∗∗∗

(0.00630) (0.00593) (0.00593) (0.00625)
∆ ln(HPI) t− 36 -0.0144∗ -0.0131∗ -0.0141∗ -0.0156∗

(0.00784) (0.00747) (0.00738) (0.00770)
ln(AGI) 1998 -0.000486∗∗ -0.000507∗∗ -0.000386∗∗∗

(0.000190) (0.000190) (0.000117)
ln(AGI) 1998×∆ ln(HPI) t− 12 0.0157∗∗ 0.0163∗∗ 0.0151∗∗ 0.0125∗∗

(0.00703) (0.00701) (0.00604) (0.00536)
ln(AGI) 1998×∆ ln(HPI) t− 24 0.00169 0.00207 0.00157 -0.0000620

(0.00371) (0.00358) (0.00385) (0.00396)
ln(AGI) 1998×∆ ln(HPI) t− 36 -0.00712 -0.00664 -0.00744 -0.00921∗

(0.00447) (0.00428) (0.00475) (0.00529)
Fixed effect None State Metro Zip Code
Obs. 82070 82070 82070 82070
R2 0.0628 0.0848 0.128 0.0648

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) Using CoreLogic HPI

(1) (2) (3) (4)
ZHVI vol ZHVI vol ZHVI vol ZHVI vol

∆ ln(ZHV I) t− 12 -0.0113∗ -0.0162∗∗ -0.0165∗∗ -0.0170∗∗

(0.00650) (0.00742) (0.00719) (0.00729)
∆ ln(ZHV I) t− 24 -0.0126∗∗∗ -0.0132∗∗∗ -0.0133∗∗∗ -0.0140∗∗∗

(0.00320) (0.00296) (0.00290) (0.00297)
∆ ln(ZHV I) t− 36 -0.00147 -0.00323 -0.00303 -0.00375

(0.00841) (0.00679) (0.00701) (0.00686)
ln(AGI) 1998 -0.000935∗∗∗ -0.000860∗∗∗ -0.000873∗∗∗

(0.000113) (0.000131) (0.000131)
ln(AGI) 1998×∆ ln(ZHV I) t− 12 0.0575∗∗∗ 0.0560∗∗∗ 0.0552∗∗∗ 0.0514∗∗∗

(0.00794) (0.00718) (0.00731) (0.00711)
ln(AGI) 1998×∆ ln(ZHV I) t− 24 0.0208∗∗∗ 0.0196∗∗∗ 0.0191∗∗∗ 0.0177∗∗∗

(0.00604) (0.00577) (0.00573) (0.00518)
ln(AGI) 1998×∆ ln(ZHV I) t− 36 0.0109 0.00872 0.00776 0.00363

(0.00750) (0.00851) (0.00822) (0.00867)
Fixed effect None State Metro Zip Code
Obs. 82070 82070 82070 82070
R2 0.0320 0.154 0.226 0.0329

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Using Zillow ZHVI

Table 6: Repeats Table 5, interacting explanatory variables with 1998 log AGI.
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(1) (2) (3) (4) (5) (6)
ZHVI vol ZHVI vol ZHVI vol ZHVI vol ZHVI vol ZHVI vol

Housing / expenditures 0.578∗ 0.593∗ 0.565∗∗∗ 0.688∗∗∗ 0.582∗∗

(0.315) (0.303) (0.113) (0.108) (0.277)
Owned / expenditures 0.799∗

(0.464)
Ln(AGI) -0.0308∗∗∗ -0.0292∗∗∗ -0.0307∗∗∗

(0.00328) (0.00231) (0.00314)
Food / expenditures 0.0812

(0.554)
Constant -0.0931 -0.00647 0.0208 -0.0884∗∗ -0.0193 0.0133

(0.110) (0.0682) (0.106) (0.0400) (0.0369) (0.135)
Fixed Effect None None None State State None
Obs. 2804 2804 2804 2804 2804 2804
R2 0.136 0.0981 0.263 0.652 0.761 0.264

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: This table reports zip-code-level regressions of return volatility on MSA-level mea-
sures of the housing expenditure share from the Consumer Expenditure Survey. Standard
errors are clustered by MSA in columns 1-3 and by state in columns 4-6.
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(1) (2) (3) (4) (5) (6)
ZHVI vol ZHVI vol ZHVI vol ZHVI vol LTV ZHVI vol

Non-recourse 0.0324∗∗∗ 0.0319∗∗∗ 0.0341∗∗∗ 0.0322∗ -0.0233∗

(0.00865) (0.00869) (0.00895) (0.0182) (0.0119)
LTV -1.393∗

(0.736)
Housing expenditure share 0.741∗∗ 0.753∗∗ 0.719∗ 0.739 -0.672∗∗∗ -0.195

(0.296) (0.284) (0.394) (0.479) (0.210) (0.725)
Ln(AGI) -0.0302∗∗∗ -0.0252∗∗∗ -0.0221∗∗∗

(0.00360) (0.00418) (0.00432)
Ln(Population) 0.000631 -0.00179

(0.00958) (0.0125)
Fraction black residents 0.0286∗∗∗ 0.0292∗∗∗

(0.00800) (0.00902)
Constant -0.161 -0.0480 -0.0690 -0.0530 1.133∗∗∗ 1.418

(0.103) (0.0945) (0.0846) (0.0858) (0.0720) (0.863)
Sample All All All Excl. CA All All
Obs. 2804 2804 2803 2330 2804 2804
R2 0.286 0.408 0.425 0.335 0.0701 .

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: This table reports zip-code-level regressions of return volatility on the state-level
non-recourse indicator from Ghent and Kudlyak (2011). Standard errors clustered by state.
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