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Energy firms use demand-response programs such as direct load control contracts (DLCCs) to curtail

electricity consumption during peak load periods. We study contracts that allow utilities to directly reduce

customers’ consumption via remote control devices. Regulators limit the number of times (calls) in a year

a customer’s power consumption can be reduced, the duration of each call, and the total number of hours

of power reduction over the life of the contract. For technical reasons, utilities partition customers that

enroll in DLCCs into groups. To optimally implement DLCCs, utilities have to solve a stochastic dynamic

optimization problem each day that determines how many groups to call and the timing and duration of

each call. This is a provably difficult optimization problem. A practically appealing version of DLCCs is one

in which all calls are restricted to the same duration. Under this restriction, we show that the problem has a

special structure that enables us to find optimal solutions. We develop a near-optimum heuristic procedure

for the general stochastic problem. There are two simplifications in our approximation scheme. First, we

aggregate the groups into a single group, which allows us to reduce the state space. Second, we ignore the

detailed structure of the uncertainty. We refer to the error induced by these two schemes as aggregation

and information error, respectively. The asymptotic relative error, which includes the information error

(O(1/
√
n)) and the aggregation error (O(1/n)), is shown to be zero. The effectiveness of our proposed

solution procedures is also verified numerically. Finally, applying our heuristic to an industrial instance from

the Southern California region results in approximately 8% saving in the energy generation cost.

Subject classifications: Electric Industries. Dynamic programming. Stochastic Programming.
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1. Introduction

For energy firms, matching supply and demand is challenging due to variability in demand, large

fluctuations in cost among alternative power generation methods, and the inability to store power.

Power consumption is often weather dependent and varies by hour of day. High demand can cause

grid failure, which is estimated to cost tens of billions of dollars per year.1 Inability to meet demand,

besides being unacceptable, results in significant direct and indirect financial penalties for the

utilities (Taylor and Taylor 2015).

Supply costs are highly non-linear (see Fig. 1, and Meulemeester (2014), Posner (2015), Next-

Kraftwerke-Belgium (2016)). When demand rises above amounts that can be supplied by primary

power generators such as renewable (Alizamir et. al 2016), nuclear, coal, and gas, secondary sources

such as diesel and gasoline-powered generators are used. Peak period refers to the time interval

when demand exceeds primary generators’ capacity and peak units must be activated. As indicated

in Fig. 1, peak units are significantly more expensive. The U.S. Government Accountability Office

finds that the cost of generating electricity during hot summer days is about 10 times higher than

at night. The top 100-highest priced hours in one year account for nearly 20% of the total energy

cost.2 Therefore, dynamic demand management during peak periods is central to matching supply

and demand in this industry.

Utilities have introduced a number of programs that reduce or shift the peak load through a

pricing mechanism (Peura and Bunn 2015, Baldick et. al 2006, Kamat and Oren 2002) or by direct

load control contracts (DLCCs) (Oren and Smith 1992). In this paper, we concentrate on DLCCs,

which are very popular in developed countries and, according to the Federal Energy Regulatory

Commission, in the U.S., “as of 2012, more than 200 utilities across the country offered some type

of direct load control program for residential customers” (Michigan Public Service Commission,

2015). DLCCs permit utility companies to directly reduce a customer’s energy usage using a remote

control device that is installed on site. In residential areas, DLCCs usually target central air

conditioning systems, controlled electric appliances, electric water heaters, and pool pumps. By
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Figure 1 Power generation cost is strictly convex and increases in hourly consumption rate (Solar Energy Indus-

tries Association, 2016).

reducing some consumers’ energy consumption, utility companies can avoid launching peak units

(Michigan Public Service Commission, 2015). It is also anticipated that the implementation of

DLCCs will rapidly expand due to the Internet of Things.

The general structure of a DLCC that we study in this paper is as follows. Due to technological

constraints, the DLCC participants are partitioned into identical groups to allow for load shedding

in equal increments and ensure that the load is reduced in a balanced way.3 A utility company

informs customers in advance that their consumption will be reduced by a pre-specified amount

for a certain period of time. Regulators allow the utility companies to reduce customer groups’

consumption for a maximum of K events in a year, for a maximum cumulative period of H hours,

and each event is required to be continuous and last no longer than L hours.

The energy consumption profile (ECP), illustrated in Fig. 2, depicts the amount of power con-

sumed over a typical day. The horizontal axis denotes the time of day and the vertical axis shows

the energy consumption rate in mega watts per hour. ECPs can have various shapes—e.g., uni-

modal on a summer day and bimodal on a winter day (see Fig. 2). Our work is based on problems

faced by a large utility serving the Southern California region. This utility classifies ECPs into
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Figure 2 Actual data and block-structure for a summer day and a winter day (actual data from California

Independent System Operator (2012)).

day-types. There are approximately 10 day-types. To optimize the value of DLCCs, the firm must

decide each day the number of groups to “call”, the starting time, and the duration for each call.

This decision is typically made a day in advance and communicated to the affected consumers.

In addition, the type of day is almost always known a day ahead. Although the type of day for

the affected day is known, the types of days in the rest of the contract period remain uncertain.

For modeling purposes, the ECP is divided into identical rectangular blocks, in which each block

represents the amount of load reduction that can be achieved if one customer group is called for

one time unit.

To illustrate an aspect of the optimization problem we are addressing, assume that we have

decided to call three groups for 1, 1, and 2 hours, respectively (see Fig. 3). Observe that the savings

will depend on the starting time for each of these groups. Assignment (a) uses starting times 1, 7,

and 7, while assignment (b) uses 7, 7, and 1. Fig. 3 shows the differences in power generation costs

for these two assignments.

In summary, each day, after the type of day is determined, the following questions must be

answered: Which of the G groups should be called that day, for how long, and when should the

call for each group begin? The objective is to minimize the total power generation cost over the
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Figure 3 An example: Assigning 3 calls with lengthes 1, 1, and 2 to customer groups.

contract horizon, which is equivalent to maximizing the total saving. The constraints are (i) each

group of customers is called no more than K times in a year, (ii) the duration of each call is less

than L hours, (iii) the power reduction must occur over a continuous interval, and (iv) the total

number of hours of load reduction for a group in a year cannot exceed H hours.

We refer to our problem as the general stochastic problem (GSP), in which the uncertainty in the

type of day is modeled via multi-nomial distributions. The GSP can be viewed as a general version

of the revenue management problem (Adelman 2007, Zhang and Adelman 2009, Cooper 2002).

Specifically, with one customer group, the GSP reduces to the well-known revenue management

problem (Jasin and Kumar 2012). The GSP with two groups is weakly NP-complete and with

G groups is strongly NP-complete. The GSP is a finite-horizon stochastic dynamic program with

a 2G-dimensional state space. The state space is the number of available calls and hours for

each group. We present a heuristic approach (HGSP) that is based on two approximations: (i)

ignoring uncertainty which creates information error, and (ii) ignoring group identities which

creates aggregation error. Our analysis of the information error adapts the approach of Jasin

and Kumar (2012). We show that the worst-case relative performance of the information and

aggregation errors are O(1/
√
n) and O(1/n), respectively, where n denotes the problem size.

The power company that we are working with is interested in a policy in which all calls are of

the same duration. The corresponding problem is referred to as the fixed-length stochastic problem

(FSP). We present a polynomial time algorithm to find an optimal solution to the FSP.

The remainder of the paper is organized as follows. Section 2 presents the mathematical formu-

lation of our problem and establishes its NP-completeness. In Section 3, we present a polynomial
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time algorithm to solve the FSP. Sections 4 and 5 present our heuristic approach to solve the GSP,

study its theoretical properties, and establish its worst-case error bounds. In Section 6, we test the

effectiveness of the HGSP and solve an industrial instance of the problem. Finally, we conclude the

paper and offer some directions for future work.

2. Problem Formulation

The GSP is a finite-horizon stochastic dynamic program in which stages correspond to the days

in the planning horizon d= 1, . . . ,D. For a complete list of notations, see Appendix F. The index

d refers to the beginning of a day and, hence, d = 1 is the beginning of the planning horizon.

Uncertainty is induced by day-type ω ∈Ω. The state variables are the remaining number of calls

and hours for each group. As previously stated, a decision is made each day to determine which

groups to call, the duration of the calls, and the starting time for each call.

There are G identical groups that are indexed as g = 1, . . . ,G. Group g can be called on day d

for a duration of ldg hours, satisfying 0≤ ldg ≤L. Let mdg be a binary variable that shows if group

g is called on day d. If ldg > 0, then mdg = 1, and otherwise mdg = 0.

We define vectors Ld = (ld1, . . . , ldG) and Md = (md1, . . . ,mdG), for all d, which respectively

show the duration of calls and whether each group is called on day d. We define vectors Hd =

(hd1, . . . , hdG) and Kd = (kd1, . . . , kdG), for all d, which respectively show the number of calls avail-

able and the duration of time available from each group on day d. At the beginning of the planning

horizon d= 1, we have H1 = (H, . . . ,H) and K1 = (K, . . . ,K), which represent identical contracts

of groups.

Let the augmented vector (Ld,Md) denote a decision on day d. Let Θd denote the set of

feasible decisions on day d. We define Θd := {(Ld,Md)| mdg ≤ kdg, ldg ≤ min{hdg,L}, mdg =

I(ldg), for all g}, for all d. Here, I(.) is the indicator function: I(ldg) = 1 if ldg > 0, and otherwise

I(ldg) = 0. The finite-horizon stochastic dynamic program for the GSP is as follows:

Vd(Hd,Kd) = min
(Ld,Md)∈Θd

{ψ(Ld, ωd) +

E [Vd+1(Hd−Ld,Kd−Md)]}, ∀d= 1, . . . ,D− 1,

VD(HD,KD) = min
(LD,MD)∈ΘD

{ψ(LD, ωD)}, (1)
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where, Vd(Hd,Kd) is the optimal cost for days d, d + 1, . . . ,D given Hd available time and Kd

available number of calls. Finally, ψ(Ld, ωd) denotes the minimum cost that one could achieve in

day d, which is found by solving a mixed integer linear programming (MILP) problem (see Section

2.1).

2.1. Single day problem

We present an MILP formulation to obtain ψ(Ld, ωd). This MILP is referred to as the single day

problem (SDP).Each day consists of T time periods—e.g., 24 hours. Let t denote the index for

time periods in a day. We assume that the ECP height is constant during time period t on day

d and is given by function rt : Ω−→ Z+, and hence rt(ωd) is the ECP height in period t and day

d. Moreover, the energy cost in period t and day d depends solely on rt(ωd), which is given by

the function f : Z+ −→R. For each z ∈ Z, z ≥ 1, we define ∂f(z) := f(z)− f(z− 1) and ∂2f(z) :=

∂f(z)− ∂f(z − 1). We assume that the cost function satisfies: (i) f(0) = ∂f(0) = ∂2f(0) = 0, (ii)

∂f(z) > 0, for all z ∈ Z, z ≥ 1, and (iii) ∂2f(z) > 0, for all z ∈ Z, z ≥ 1. Properties (ii) and (iii)

respectively mean that f(z) is strictly increasing in z and that the marginal increase in z is also

strictly increasing in z (as indicated in Fig.1). Finally, note that f does not have index d and/or t

since the energy cost depends solely on the ECP height.

Let binary variables ugt and wgt, for all g and t, be defined as follows: ugt = 1 shows that group g

is on call in period t of day d, and wgt = 1 indicates that group g starts in t. The SDP is formulated

as follows:

ψ(Ld, ωd) = min
T∑

t=1

f



[
rt(ωd)−

G∑

g=1

ugt

]+
 (2)

s.t.
T∑

t=1

ugt = ldg, ∀g, (3)

wgt ≥ ugt−ug(t−1), ∀g, t≥ 2, (4)

wg1 ≥ ug1, ∀g, (5)

T∑

t=1

wgt ≤ 1, ∀g, (6)

ugt,wgt ∈ {0,1}, ∀g, t, (7)
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where, [z]+ := max{z,0}. In the objective function (Eq. 2),
∑G

g=1 ugt is the number of groups on call

in period t. The ECP height in period t decreases by
∑G

g=1 ugt and hence becomes rt(ωd)−
∑G

g=1 ugt

if this value is positive, and 0 otherwise. Eq. (3) ensures that group g is called for ldg time units and

Eqs. (4)–(6) guarantee that the reduction occurs over a continuous interval. Eqs. (4)–(5) initialize

the starting time of the calls. Eq. (6) confirms that each group can be called once on day d at most.

We next show that the deterministic version of the GSP, which we refer to as the general

deterministic problem (GDP), is very difficult. The following proposition establishes that special

case of the GDP with two groups is weakly NP-complete and the general case of the GDP is strongly

NP-complete.

Proposition 1. (a) the GDP with G = 2 is weakly NP-complete, and (b) the GDP is strongly

NP-complete.

The proof is standard and follows from a reduction from the partition problem for part (a) and

a reduction from the 3-partition problem in part (b) (see Appendix A). We note that the GDP is

an easier, special case of the GSP because it considers only one realization of day-types; hence, the

GSP is significantly more difficult.

3. Fixed-Length Policy

Due to the ease of implementation, a policy that is used frequently is the fixed-length policy (FLP).

According to this policy, the duration of calls are equal and fixed to L′ hours, where 0≤ L′ ≤ L.

Under the FLP, the energy companies always contract with their customers for H =KL′ hours.

In fact, the constraint on the total hours of energy-consumption reduction is no longer necessary.

We refer to this problem as the fixed-length stochastic problem (FSP), and it includes only the

constraint on the total number of calls per group.

We aggregate the state variables, solve the low-dimensional problem, and disaggregate the solu-

tion. This approach is proven to find an optimal solution for the FSP. The aggregate version of the

FSP is refered to as the aggregate fixed-length stochastic problem (AFSP). Let Kd denote the total

number of calls that we want to assign to groups on day d, and Kd denote the remaining number
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of calls at the beginning of day d. Obviously, K1 =GK. On each day d, our decision must satisfy

Kd ≤Kd because we have at most Kd calls to use for the rest of the planning horizon d, d+1, . . . ,D.

Moreover, Kd ≤G, for each day d, because G groups exist and each group can be called at most once

a day. We define the set of feasible decisions for the AFSP as Θaf
d := {Kd ∈Z+|Kd ≤min{Kd,G}},

for all d. Let ψaf(Kd, ωd) be the optimal cost of using Kd on day d. The dynamic programming

(DP) formulation of AFSP is as follows:

Vaf
d (Kd) = min

Kd∈Θaf
d

{ψaf(Kd, ωd) + E
[
Vaf
d+1(Kd−Kd)

]
}, ∀d= 1, · · · ,D− 1,

Vaf
D (KD) = min

KD∈Θaf
D

{ψaf(KD, ωD)}, (8)

where, ψaf(Kd, ωd) is the optimal cost of using Kd calls on day d knowing that the day-type is ωd.

We next formulate a mathematical model to determine ψaf(Kd, ωd). This problem is referred to as

the aggregate fixed-length single day problem (AFSDP). Let integer variables st and Rt, for each t,

indicate the number of groups that start reducing their energy consumption at period t, and the

ECP height at period t after customers reduce their energy consumption, respectively. The AFSDP

is formulated as follows:

ψaf(Kd, ωd) = min
T∑

t=1

f(Rt), (9)

s.t. Rt ≥ rt(ωd)−
min{T−L′+1,t}∑

t′=max{1,t−L′+1}
st′ , ∀t (10)

T−L′+1∑

t=1

st =Kd (11)

st,Rt ∈Z+, ∀t. (12)

The summation in constraint (10) represents the number of groups that are on call at time t.

Constraint (11) ensures that the total number of groups reducing their consumption on day d is

equal to Kd.

Algorithm 1 presents our approach for solving the FSP. We first solve the AFSDP for all 0≤Kd ≤

GK and ωd ∈Ω and we then solve the AFSP. For each day d, we find a set of calls that is denoted
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by Dd. We assign the calls to the groups that have been called the fewest in days 1, . . . , d−1. Note

that the starting times of calls are known; hence, when a call is assigned to a group, the group is

called starting from that time.

Algorithm 1 Solving the FSP.

1: Solve the AFSDP for all (Kd, ωd) s.t. 0≤Kd ≤GK and ωd ∈Ω

2: Solve AFSP which results in Dd, for all d

3: Define TCg := 0, for all g

4: for d= 1, · · · ,D do

5: Sort TCg’s in a non-decreasing order: TC[1] ≤ TC[2] ≤ · · · ≤ TC[G]

6: Define ĝ := 1

7: for each call in Dd do

8: Assign the call to group [ĝ]

9: TC[ĝ] := TC[ĝ] + 1

10: ĝ := ĝ+ 1

11: end for

12: end for.

Theorem 1. Algorithm 1 finds an optimal solution for the FSP in a polynomial time.

Next, we present some lemmas that are used in the proof of theorem 1. The following remark

presents an alternative way of formulating the AFSDP.

Remark 1. Define f̂d,t : {z ∈ Z|0 ≤ z ≤ rt(ωd)} −→ R as f̂d,t(z) = f(rt(ωd)) − f(z). Define the

AFSDP∗ as min
∑T

t=1

∑G

g=1 ∂f̂d,t(g)ugt subject to rt(ωd)−Rt =
∑G

g=1 ugt, for all t, and Eqs. (10),

(11), and (12), where ugt ∈ {0,1}, for all g, t. The AFSDP∗ and the AFSDP are equivalent.

Here, ∂f̂d,t(z) = f̂d,t(z)− f̂d,t(z − 1) for z ∈ Z, z ≥ 1. We note that f̂d,t is a concave increasing

function and f̂d,t(z) measures the saving at period t of day d given that the ECP height has reduced

to z. Finally, note that the objective function of the AFSDP∗ is a piecewise linear function.

Consider the linear programming (LP) relaxation of the AFSDP∗, which is obtained by replacing

constraints (12) with st,Rt ∈R+, for all t, and replacing constraints ugt ∈ {0,1} with 0≤ ugt ≤ 1,

for all g, t. We denote the LP relaxation by AFSDPr.
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Proposition 2. The AFSDPr solves the AFSDP∗.

Lemma 1. In Algorithm 1, at each iteration d of the for-loop, such that d≤D−1, we have |TCg′−

TCg′′ | ≤ 1 for each pair of groups g′, g′′.

See Appendix B for the proofs. Based on Proposition 2, the AFSDP∗ is solved in a polynomial

time. Moreover, according to Lemma 1, Algorithm 1 assigns calls to groups in an almost balanced

fashion, for all d≤D− 1.

Lemma 2. The solution of Algorithm 1 satisfies TCg ≤K, for all g.

Lemma 2 states that the solution that we obtain by applying Algorithm 1 is feasible.

Proof of Theorem 1. The AFSP is a relaxation of the FSP because the AFSP does not consider

group identities. This means that a feasible solution for the FSP is always feasible for the AFSP;

however, a feasible solution for the AFSP may not be feasible for the FSP. Therefore, to prove the

optimality of the solution, it suffices to show that the obtained solution is feasible for the FSP. For

this, we must prove that the use of for -loop for assigning the solution of each day Dd to groups does

not violate the maximum number of calls per group constraint. This is proven in Lemma 2. Thus,

Algorithm 1 finds an optimal solution for the FSP. Note that once the solution of the AFSDP for

all 0≤Kd ≤GK and ωd ∈Ω is given, which is found in a polynomial time (see Proposition 2), the

rest of the algorithm requires a polynomial time. Therefore, the proof of theorem 1 is complete.

4. General Stochastic Problem (GSP)

Solving the GSP is difficult because of the stochasticity and 2G-dimensional state space. We present

an effective heuristic approach, which is denoted by HGSP, to solve the GSP and show that, for a

sufficiently large problem size, the error is negligible. The main steps of the HGSP are as follows: (1)

aggregating state space to obtain the aggregate general stochastic problem (AGSP), (2) fixing the

number of days of each type to their expected value, to obtain the aggregate general deterministic

problem (AGDP), (3) solving the AGDP in a polynomial time using a DP algorithm, and, (4)

disaggregating the AGDP solution.
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To analyze the asymptotic behavior of our heuristic approach for sufficiently large D, K, and

H, we define n∈Z, n≥ 1 to represent the problem size. We consider a series of problems with nD

days, nK calls, and nH hours per group for all n ∈ Z, n≥ 1. We aim to show that our heuristic

approach finds an asymptotically optimal solution to the GSP. Let v
(n)
GSP denote the optimal saving

for the GSP, v
(n)
HGSP denote the HGSP saving, v

(n)
AGDP denote the optimal saving for the AGDP, and

v
(n)
AGSP denote the optimal saving for the AGSP, where the problem size is n.

Theorem 2. E[v
(n)
GSP]− v(n)HGSP =O(

√
n) for all n∈Z, n≥ 1.

Thus, as n −→∞, the relative error approaches to zero. The proof of theorem 2 follows from

noting that the difference between E[v
(n)
GSP] and v

(n)
HGSP includes two types of error—information

error and aggregation error—and finding upper bounds on these errors. Information error refers

to the error that is created from replacing random variables with their expected values.

Theorem 3 (Information Error). v
(n)
AGDP−E[v

(n)
AGSP] =O(

√
n) for all n∈Z, n≥ 1.

The proof of theorem 3 is deferred to Section 4.1. The second type of error in HGSP is called

aggregation error, which is created from aggregating the state space in step (2).

Theorem 4 (Aggregation Error). There exists a non-negative constant ρ, independent of n,

such that v
(n)
AGDP− v(n)HGSP ≤ ρ and E[v

(n)
AGSP]−E[v

(n)
GSP]≤ ρ, for all n∈Z, n≥ 1.

The proof of theorem 4 is deferred to Section 5.3. Theorem 4 states that there exists a constant

upper bound on the aggregation error that does not increase in n; hence, the relative aggregation

error is O( 1
n

). Finally, the proof of theorem 2 follows from theorems 3 and 4.

4.1. Information error

Information error is referred to the difference between the optimal value of the AGDP and the

expected optimal value of the AGSP. Here, the AGDP considers pωD days of type ω for each ω ∈Ω,

where pω denotes the proportion of days of type ω (the probability of day-type ω). We assume pωD

is an integer for all ω, which is a reasonable assumption because pωD is the expected number of

days of type ω. We show that the absolute information error is O(
√
n).
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In the AGSP, at the beginning of each day, the day-type is revealed. We want to determine the

total number of calls and hours that should be used for that day. The AGSP is an special case of

finite horizon revenue management problems (see, for example, Jasin and Kumar (2012), Cooper

(2002)). The day-type resembles “customer type,” and the total number of calls and hours that

we use in a day resembles the “offers.” Let “offers” be indexed by j = 1, . . . , J . Different offers

are distinguished by the number of calls, number of hours, and their day-types. In total, we have

J = |Ω|G2L+1 different “offers” from which we can choose one to “make” in a day. We also include

a no-offer scenario that explains the “+1” in the total number of available offers. Each offer can

be used in only one day-type; hence, we use the notation ω(j) to denote the day-type in which

offer j can be used. Once offer j is made, a saving of θj is realized with probability 1, where θj is

found by solving the aggregate single day problem (see Section 5.1). We use index γ = 1, . . . ,Γ to

denote resources. In the AGSP, we have Γ = 2, which are the total number of calls and hours in the

aggregate sense. Let aγj ≥ 0 show the amount of resource γ used when offer j is made, and cγ denote

the total available resource γ at the beginning of the planning horizon. Let aγ := (aγ1, . . . , aγJ) and

aγ,max := maxj{aγj} for all γ.

To analyze the asymptotic behavior of the error, we use superscript (n) to denote scaling by

factor n, where n∈Z, n≥ 1; hence, the AGSP(n) and the AGDP(n) respectively denote the AGSP

and the AGDP with c(n)γ = ncγ , for all γ, and D(n) = nD. The superscript (n) is dropped whenever

n= 1.

Our analysis of the information error adapts the approach of Jasin and Kumar (2012). They con-

sider a network revenue management problem with uncertain customer choice, where the customer

arrival is modeled via Poisson processes. They show that the expected revenue loss is bounded by

a constant, independent of the problem size, when the problem is re-solved according to a pre-

determined schedule. Whereas in our problem, the day-type, which is analogous to the customer

type is modeled via multi-nomial distributions. We establish that the absolute information error

is O(
√
n), when the problem is solved once in the beginning of the planning horizon.
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The LP relaxation of the AGDP(n) is denoted by the RAGDP(n), which is formulated as follows.

Here, xj denotes the number of times that offer j is made in the planning horizon (xj can be

fractional):

max
∑

j

θjxj (13)

s.t.
∑

j

aγjxj ≤ ncγ , ∀γ, (14)

∑

j:ω(j)=ω

xj ≤ npωD, ∀ω, (15)

xj ∈R+, ∀j. (16)

Let the optimal solution of the RAGDP(n) be denoted by x∗(n) = (x∗1
(n), . . . , x∗J

(n)). Moreover, let

v
(n)
RAGDP denote the optimal value of the RAGDP(n). Note that x∗(n) = nx∗ for all n≥ 1. Moreover,

v
(n)
RAGDP provides an upper bound on the optimal value of the AGDP(n).

We next present a simple heuristic approach to obtain a lower bound on the optimal value of

the AGSP(n). Let qj := x∗j/(pω(j)D), for all j, be the allocation probability of offer j. Note that qj

does not need superscript because q
(n)
j = qj for all n≥ 1.

Algorithm 2, referred to as the LBH(n), finds a lower bound on the optimal value of the AGSP(n).

If the condition in Line 3 is satisfied in day d, the LBH(n) selects offer ĵ using probability {qj}.

This will consume some of the resources and generate some profit. If the condition in Line 3 is

violated, the LBH(n) does not generate any profit.

Algorithm 2 Lower-Bound Heuristic(n) (LBH(n)).

1: Define v
(n)
LBH := 0, and c̃γ := ncγ , for all γ

2: for d= 1, · · · , nD do

3: if c̃γ ≤ aγ,max for all γ then

4: Select offer j using allocation probability {qj}, and denote it by ĵ

5: Update v
(n)
LBH := v

(n)
LBH + θĵ, and c̃γ := c̃γ − aγĵ, for all γ

6: end if

7: end for

8: return v
(n)
LBH.
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We introduce an upper-bound heuristic, given in Algorithm 3, in a similar fashion, ignoring

resource constraints. In each day, the UBH(n) selects an offer j with probability {qj} and realizes

the corresponding profit θj.

Algorithm 3 Upper-Bound Heuristic(n) (UBH(n)).

1: Define v
(n)
UBH := 0

2: for d= 1, · · · , nD do

3: Select offer j using allocation probability {qj}, and denote it by ĵ

4: Update v
(n)
UBH := v

(n)
UBH + θĵ

5: end for

6: return v
(n)
UBH.

Lemma 3. v
(n)
AGDP−E[v

(n)
AGSP]≤E[v

(n)
UBH]−E[v

(n)
LBH], for all n∈Z, n≥ 1.

The proof follows from E[v
(n)
UBH] = v

(n)
RAGDP ≥ v(n)AGDP ≥ E[v

(n)
AGSP] ≥ E[v

(n)
LBH], for all n ∈ Z, n ≥ 1,

and is given in Appendix C. In the remainder, we find an upper bound on E[v
(n)
UBH]−E[v

(n)
LBH] that

is also valid as an upper bound for the information error.

For any realization of the day-types, the LBH(n) and UBH(n) produce equal profits on all days as

long as the condition in Line 3, Algorithm 2, is satisfied. Let d∗(n) denote the minimum of nD and

the last day in which this condition is satisfied. The expected value of profit that is then produced

by the LBH(n) and UBH(n) during days 1,2, . . . , d∗(n) is equivalent. In days d∗(n) + 1, . . . , nD, the

UBH(n) produces profit but the LBH(n) does not. Hence, E[v
(n)
UBH]−E[v

(n)
LBH]≤ θmaxE[nD− d∗(n)],

where θmax := maxj{θj}. We note that E[d∗(n)] =
∑nD

d=1P (d∗(n) ≥ d). Therefore, E[nD − d∗(n)] =

∑nD

d=1P (d∗(n) <d), and we have:

E[v
(n)
UBH]−E[v

(n)
LBH]≤ θmax

nD∑

d=1

P (d∗(n) <d), n∈Z, n≥ 1. (17)

Thus, it remains to obtain an upper bound on P (d∗(n) < d), for all n and d. On each day, after

knowing the day-type, the UBH(n) makes an offer based on probability {qj} and then some of the

resources are utilized. Although the expected value of the resource usage is
aγx∗

D
, for all γ and d, the
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actual utilization of resource γ on day d is
aγx∗

D
+ ∆(n)

γ (d), where ∆(n)
γ (d) is the deviation from the

expected utilization. We note that ∆(n)
γ (d) is a discrete random variable that follows a multi-nomial

distribution with 1 trial and event probability {pω(j)qj}. Let =d denote the accumulated information

up to day d. Then, {∑d

d′=1 ∆(n)
γ (d′)}nDd=1 and {|∑d

d′=1 ∆(n)
γ (d′)|}nDd=1 are respectively martingale and

submartingale with respect to filtration {=d}. Note that E[
∑d

d′=1 ∆(n)
γ (d′)|{=d}] = 0, for all n and d.

The following lemma provides an upper bound on the second moment of
∑d

d′=1 ∆(n)
γ (d′) conditional

on the filtration {=d}.

Lemma 4. E[(
∑d

d′=1 ∆(n)
γ (d′))2|{=d}]≤ 1

4
a2γ,maxd, for all γ and d.

We next provide an intuition for the information error being O(
√
n) by comparing n = 1 and

n= 2 (see Fig. 4). Consider P (|∑d

d′=1 ∆(n)
γ (d′)|> κ) = ϑ, where ϑ is a significantly small positive

number. For this equation to hold for all d, κ must be a linear function of the standard deviation

of |∑d

d′=1 ∆(n)
γ (d′)|. Hence, using Lemma 4, κ must be a linear function of

√
d. Therefore, in Fig.

4, the shaded area indicates a region where |∑d

d′=1 ∆(n)
γ (d′)| would fall with probability 1−ϑ. On

the other hand, consider a resource γ for which the corresponding resource constraint is binding

(a similar argument can be made for the non-binding constraints). Thus, the expected value of

the remaining resource γ decreases linearly in d, from ncγ to 0. We can roughly assume that the

LBH(n) stops offering when the expected value of the remaining resource γ hits the shaded region.

Moreover, the information error is related to the days after this hitting time. The number of days

after the hitting time for n= 1 and n= 2 are D̃ and
√

2D̃, respectively. Therefore, the information

error is O(
√
n). We next rigorously prove this result.

Given that the LBH(n) makes an offer on day d, the utilization of γ during days 1,2, . . . , d is given

by d
D

aγx
∗ +

∑d

d′=1 ∆(n)
γ (d′). Recall that, for all γ, the total available resource γ at the beginning

of the planning horizon is ncγ . Thus, the condition for LBH(n) to make an offer on day d+ 1 is as

follows:

Condition (†) :
d∑

d′=1

∆(n)
γ (d′)≤ ncγ −

d

D
aγx

∗− aγ,max, for all γ.

In the following lemma, we use condition (†) and Doob’s submartingale inequality to present an

upper bound on P (d∗(n) <d), for all n and d.
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2D

2cγ E[remaining 2cγ ]

E[remaining cγ ]

D̃
“Inf Err”

√
2D̃

“Inf Err”

D

cγ

Figure 4 Intuition for the absolute information error being O(
√
n).

Lemma 5. P (d∗(n) <d)≤min
{

1,
∑

γ d
(

2n
aγ,max

(cγ − d
nD

aγx
∗)− 2

)−2}
, for all n and d.

Note that a1,max =G, a2,max =GL, c1 =GK, and c2 =GH. Moreover, a1x
∗ and a2x

∗ are respec-

tively the utilized number of calls and hours, based on the solution of RAGDP. Using Lemmas 3 and

5, and Eq. (17), we obtain the following upper bound on the information error, for all n∈Z, n≥ 1.

v
(n)
AGDP−E[v

(n)
AGSP]≤ θmax

nD∑

d=1

min
{

1,
∑

γ

d
( 2n

aγ,max

(cγ −
d

nD
aγx

∗)− 2
)−2}

. (18)

The right-hand-side of Eq. (18) provides a tight upper bound that can be calculated for any given

instance. However, it may not be obvious why the right-hand-side is O(
√
n). Next, we simplify

the upper bound in Eq. (18). (See Fig. 5 for the graphical illustration.) Let the planning horizon

consist of two parts: nD−√nD days starting from the beginning of the horizon, and the remaining

√
nD days. Using Lemma 3 and Eq. (17), we have:

v
(n)
AGDP−E[v

(n)
AGSP] ≤ θmax

dn−√ne∑

i=1

iD∑

d=(i−1)D+1

P (d∗(n) <d) + θmaxD
√
n,

for all n ∈ Z, n≥ 1. Here, we use dn−√ne instead of n−√n, which is valid because we increase

the upper bound. Moreover, for the last D
√
n days, we use 1 as the upper bound for P (d∗(n) <d).

Using Lemma 5, we have:

v
(n)
AGDP−E[v

(n)
AGSP] ≤ θmax

dn−√ne∑

i=1

iD∑

d=(i−1)D+1

∑

γ

1
4
da2γ,max(

ncγ − d
D

aγx∗− aγ,max

)2 + θmaxD
√
n
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nD

ncγ

0 D 2D
. . . dn−√neD . . .
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nD −D√n D
√
n

∑dn−√ne
i=1

∑iD

d=(i−1)D+1
· · ·

. . .

Figure 5 A graphical illustration of simplifying the upper bound given in Eq. (18).

≤ θmax

dn−√ne∑

i=1

iD∑

d=(i−1)D+1

∑

γ

1
4
da2γ,max(

ncγ − iD
D
cγ − cγ

)2 + θmaxD
√
n,

for all n ∈ Z, n≥ 1. We replace aγx
∗ by cγ , since aγx

∗ ≤ cγ , for all γ, due to the feasibility of x∗.

We also replace aγ,max by cγ , because logically, aγ,max ≤ cγ , for all γ. Moreover, in the denominator,

we replace d by D, which corresponds to the lower bound on the expected remaining resource γ

that is shown in Fig. 5. Finally, we have:

v
(n)
AGDP−E[v

(n)
AGSP] ≤ 1

4
θmax

∑

γ

a2γ,max

c2γ

dn−√ne∑

i=1

1

(n− i− 1)2

iD∑

d=(i−1)D+1

d+ θmaxD
√
n

≤ 1

4
θmaxD

2
∑

γ

a2γ,max

c2γ

dn−√ne∑

i=1

i

(n− i− 1)2
+ θmaxD

√
n (19)

≤ 1

4
θmaxD

2
∑

γ

a2γ,max

c2γ

∫ n−√n+2

i=1

i

(n− i− 1)2
di+ θmaxD

√
n (20)

=
1

4
θmaxD

2
∑

γ

a2γ,max

c2γ
O(
√
n) + θmaxD

√
n. (21)

Eq. (19) follows from
∑iD

d=(i−1)D+1 d= iD2− 1
2
(D2−D) and ignoring 1

2
(D2−D). In Eq. (20), we

use an integral that is an upper bound for
∑dn−√ne

i=1
i

(n−i−1)2 . Eq. (21) represents the result of some
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standard calculations and shows that the integral in Eq. (20) is O(
√
n). Therefore, it follows that

v
(n)
AGDP−E[v

(n)
AGSP] =O(

√
n).

5. General Deterministic Problem (GDP)

We use a DP approach to formulate the aggregate general deterministic problem. The state vari-

ables are the total remaining time and the total number of available calls, which are denoted

by Hd and Kd, respectively. At the beginning of the planning horizon d= 1, we have H1 =GH

and K1 = GK. Let Hd and Kd denote the total energy consumption reduction time and the

number of calls in day d, respectively. The set of feasible vectors (Hd,Kd) is defined as ΘAD
d :=

{
(Hd,Kd)∈Z2

+| Hd ≤min{Hd,GL}, Kd ≤min{Kd,G}
}

, for all d. After using Hd and Kd in day d,

the remaining time and calls become Hd+1 = Hd−Hd and Kd+1 = Kd−Kd, respectively. The DP

formulation for the AGDP is as follows:

VAD
d (Hd,Kd) = min

(Hd,Kd)∈ΘAD
d

{ψAD(Hd,Kd, ωd) +VAD
d+1(Hd−Hd,Kd−Kd)}, ∀d= 1, · · · ,D− 1,

VAD
D (HD,KD) = min

(HD,KD)∈ΘAD
D

{ψAD(HD,KD, ωD)}, (22)

where VAD
d (Hd,Kd) is the optimal cost of using Hd and Kd in days d, d+ 1, · · · ,D. The stage cost

ψAD(Hd,Kd, ωd) is the optimal value of the aggregate single day problem (ASDP; see Section 5.1),

which is defined as follows. Assign Hd units of energy consumption reduction time to consumers

by, at most, Kd calls to achieve the minimum energy cost on day d. The state space of the AGDP

consists of 2 non-negative integer variables, Hd and Kd, that are upper bounded by GH and GK,

respectively. Therefore, given the solution of the ASDP, the AGDP is solved in a polynomial time.

5.1. Aggregate single day problem (ASDP)

Given Hd and Kd, the ASDP minimizes the total cost in day d by using, at most, Kd calls, and

with a total time ≤Hd. Day-type ωd must be also given as it determines the shape of the ECP for

day d. The ASDP is aggregate in the sense that it ignores the group identities and does not assign

calls to groups.
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Recall that a group can be called for at most L units of time during day d. In addition, it

is not logical to call a group for more than T − t+ 1 units starting from period t. Let L(t) :=

min{L,T − t+ 1} denote the maximum duration of a call starting from t. We define non-negative

integer variables st`, for all t, `, 1≤ `≤L(t), as the number of calls with duration ` and starting

time t. The ASDP is formulated as follows:

ψAD(Hd,Kd, ωd) = min
T∑

t=1

f
([
rt(ωd)−

min{L,t}∑

i=1

L(t)∑

`=i

s(t−i+1)`

]+)
(23)

s.t.
T∑

t=1

L(t)∑

`=1

st` ≤Kd, (24)

T∑

t=1

L(t)∑

`=1

`st` ≤Hd, (25)

st` ∈Z+, ∀t, `, 1≤ `≤L(t). (26)

In the objective function,
∑min{L,t}

i=1

∑L(t)
`=i s(t−i+1)` indicates the reduction in the ECP height in

period t. Eqs. (24) and (25) guarantee that the number of calls and the total reduction time are

upper bounded by Kd and Hd, respectively. The ASDP is non-linear; however, as we state in the

following remark, it can be formulated as a MILP problem.

Remark 2. Define the ASDP∗ as min
∑Z

z=1{∂2f(z)(
∑T

t=1 εzt)} subject to:

rt(ωd)− z+ 1−
(

min{L,t}∑

i=1

L(t)∑

`=i

s(t−i+1)`

)
≤ εzt, ∀z, t, (27)

εzt ≥ 0, ∀z, t, (28)

and Eqs. (24), (25), and (26). The ASDP∗ and the ASDP are equivalent.

The explanation is given in Appendix D.1. Our experiments show that the Cplex MIP solver

is quite efficient for solving the ASDP. Another approach for solving the ASDP is to use a DP

algorithm, which also shows that the ASDP can be solved in a polynomial time.

One could initially solve the ASDP for all (Hd,Kd, ωd) such that 0≤Hd ≤GH, 0≤Kd ≤GK,

and ωd ∈Ω. Thus, the AGDP is solved using a DP algorithm in a polynomial time. We next show

that the AGDP solution can be disaggregated and assigned to groups with a constant absolute

disaggregation error.
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5.2. Assigning calls to groups

Let Dd, for all d, denote the set of calls in day d based on the AGDP solution. A call, η ∈ Dd,

is in the form of η = (st(η), |η|) where st(η) ∈ Z+ is the starting time and |η| ∈ Z+ is the length

of the call. For example, D1 = {(1,1), (1,4)} means that two groups must be called starting from

t= 1 on day 1: one group for 1 hour and the other group for 4 hours. However, it is not known

which two groups must reduce their consumption, hence, D1 = {(1,1), (1,4)} can be assigned to G

groups in G(G− 1) different ways. In general, given Dd, for all d, there are
∏D

d=1
G!

(G−|Dd|)!
possible

assignments. We also note that a feasible assignment of calls to groups may not exist. We next

present a more efficient approach for assigning calls to groups. The following example shows our

approach.

Example 1. Consider D = 5, G = 4, K = 4, L = 4, and H = 16. Assume that the AGDP solu-

tion is given by: D1 = {(1,1), (1,4), (1,3)}, D2 = {(1,2), (1,3), (1,1), (1,4)}, D3 = {(1,1)}, D4 =

{(1,4), (1,4), (1,4), (1,4)}, and D5 = {(1,1), (1,2), (1,4), (1,4)}. Note that the starting times of all

calls are t= 1. The starting times of calls do not play any role in the disaggregation step, as each

group is assigned one call in a day at most. Once a call is assigned to a group, they can start

reducing their consumption any time during that day.

We sort the calls in a non-increasing length order as shown in Fig. 6. The length of a bar shows

the duration of the corresponding call. The first number below the bar indicates the corresponding

day for the call. We divide the calls into classes of size G. This results in 4 classes, which are

denoted by ς = 1,2,3,4. We assign one call from each class to each group. This assignment is always

possible since each class has G calls. An important constraint is that, at most, one call from a day

can be assigned to a group, as without this constraint, the assignment would be straightforward.

In Fig. 6, each group is assigned exactly four calls. The second number below the bar shows the

corresponding group for the call. In the following, we formally state this approach and discuss its

properties.

Assume the AGDP is solved and outputs Dd, for all d, and let D :=
⋃D

d=1Dd. Sort the members of

D in a non-increasing length order. If the total number of calls, |D|, is less than GK, add η= (1,0)
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d= 1 2 4 4 4 4 5 5 1 2 2 5 1 2 3 5
g= 2 1 4 3 2 1 4 3 1 4 3 2 4 2 3 1

ς = 1 ς = 2

ς = 3

ς = 4

Figure 6 An example for assigning calls to groups.

to the end of the sorted list so that the number of calls become GK. We refer to the first G calls

as class 1, the second G calls as class 2, and so on. Denote the classes by ς = 1,2, · · · ,K. Define

binary variables λiςg, for all i, ς, g, such that λiςg = 1 if call i from class ς is assigned to group g,

and λiςg = 0 otherwise. We obtain an assignment of calls to groups by solving the following system,

which we refer to as the disaggregation problem (DAP):

G∑

g=1

λiςg = 1, ∀i, ς, (29)

G∑

i=1

λiςg = 1, ∀ς, g, (30)

∑

iς∈Dd

λiςg ≤ 1, ∀g,Dd, (31)

λiςg ∈ {0,1}, ∀i, ς, g. (32)

Eqs. (29)–(30) ensure a 1-to-1 assignment of calls to groups for each class. Eq. (31) guarantees

that each group g can receive one call for each day d at most. The condition iς ∈Dd means that if

the ith call from class ς belongs to day d.

Let THg, for all g, denote the sum of the call durations that are assigned to group g, which

are calculated using the DAP solution. Observe that, in example 1, TCg = 4, for all g. Moreover,

TH1 = TH4 = 12 and TH2 = TH3 = 11. The following proposition presents a property of the DAP

solution (the proof is given in Appendix D.2).

Proposition 3. Consider THg and TCg, for all g, that are calculated using the DAP solution.

Then: (a) |TCg′ −TCg′′ | ≤ 1, for all g′, g′′, and (b) |THg′ −THg′′ | ≤L, for all g′, g′′.
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Let Gg, for all g, denote the set of calls that are assigned to group g based on the DAP solution.

Recall that, at most, K calls are assigned to each group because there are K classes. Thus, the

solution satisfies the maximum call per group constraint because |Gg| ≤K for all g.

The total consumption reduction time for group g is THg. We note that the total time per

group constraint may be violated. If THg >H, for some g, we find η ∈ Gg that corresponds to the

minimum saving, and reduce its length. We repeat this process until THg ≤H for all g. The main

steps of our heuristic approach are summarised in Algorithm 4.

Algorithm 4 HGSP heuristic.

1: Solve the ASDP for all (Hd,Kd, ωd) s.t. 0≤Hd ≤GH, 0≤Kd ≤GK, and ωd ∈Ω

2: Solve the AGDP, which results in Dd, for all d

3: Let D :=
⋃D

d=1Dd
4: Sort the members of D in a non-increasing order of their lengthes

5: Add zeros to the end of the sorted list so that the number of calls become GK

6: Denote the first G calls class 1, the second G calls class 2, and so on

7: Solve the DAP, which results in Gg, for all g

8: for g= 1, · · · ,G do

9: while THg >H do

10: Reduce the length of η ∈ Gg, which corresponds to the least amount of saving

11: end while

12: end for

13: Return Gg, for all g.

Theorem 5. The HGSP always finds a feasible solution to the GDP in a polynomial time.

We next present some results that are used in the proof of theorem 5. We note that the effective-

ness of the HGSP relies heavily on the following issues. First, the DAP must always have a feasible

solution to guarantee that the HGSP can assign calls to groups. Second, the DAP must be solved

in a polynomial time. Let the DAPr denote the LP relaxation of the DAP, which is obtained by

replacing Eq. (32) with 0≤ λiςg ≤ 1, for all i, ς, g.
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For a fixed g, let B denote the coefficient matrix for Eq. (30), E1 denote the coefficient matrix

for Eq. (31) with |Dd|= G, and E2 denote the coefficient matrix for Eq. (31) with |Dd|<G. See

Appendix D.3 for a detailed characterization of B, E1, and E2.

Proposition 4. Let Φ := {λ ∈ RKG|Bλ = 1K ,E1λ = 1D1
,E2λ ≤ 1D2

, λ ≥ 0}. Then, Φ is a non-

empty and integral polyhedron.

The proof is given in Appendix D.3. Thus, for a fixed g, one can find an integer solution in Φ in a

polynomial time. In the obtained solution, one call from each class is assigned to g. By eliminating

the assigned calls and group g, the number of groups decreases by 1 while the structure of the

problem is preserved. Hence, by repeating this procedure G times, a feasible solution for the DAP

is found in a polynomial time. Therefore, the proof of theorem 5 is complete.

5.3. Worst-case analysis for the aggregation error

Recall that if THg ≤H, for all g, then the obtained solution is optimal for the GDP; otherwise,

we reduce the duration of some of the calls to achieve THg ≤H, for all g. Let ζsum denote the sum

of the durations of all calls. Proposition 5 states a condition under which the HGSP is guaranteed

to find an optimal solution for the GDP.

Proposition 5. If ζsum ≤G(H −L+ 1), then the HGSP finds an optimal solution for the GDP.

The proof is given in Appendix E.1. If the condition of Proposition 5 does not hold, the HGSP

solution may be infeasible. Recall that if for any g, THg >H, we then reduce the duration of some

of the calls that are assigned to group g.

Next, we prove theorem 4. According to Proposition 3, |TH(n)

g′ − TH
(n)

g′′ | ≤ L, for all g′, g′′.

Moreover, one could show, using a contradiction, there exists a group g′ such that TH(n)
g ≤ nH.

Hence, by some algebra, we have the following remark.

Remark 3. [TH(n)
g −nH]+ ≤L, for all n and g.
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Define δ := maxω{ψAD(1,1, ω)}; hence, δ is the maximum saving that one could achieve by

assigning a call of length 1 to a group. Therefore, for all n∈Z, n≥ 1, we have:

v
(n)
AGDP− v(n)HGSP ≤ δ

∑

g

[TH(n)
g −nH]+

≤ δGmax
g
{[TH(n)

g −nH]+}

≤ δGL.

This completes the first part of the proof. To prove the second part, note that for any realization

of day-types, we have

v
(n)
AGDP− v(n)GDP ≤ v

(n)
AGDP− v(n)HGSP ≤ δGL,

for all n ∈ Z, n≥ 1, because v
(n)
HGSP ≤ v(n)GDP. Since this is true for any realization, then E[v

(n)
AGSP]−

E[v
(n)
GSP]≤ δGL, for all n∈Z, n≥ 1. Hence, the proof of theorem 4 is complete.

We next present an alternative approach for the characterization of the aggregation error. Define

the percentage of relative infeasibility as %RI := 100
ζsum

∑
g [THg −H]

+
. Note that if THg ≤H, for

all g, %RI = 0. Moreover, note that although we do not use cost in the definition of %RI, the costs

are considered because the HGSP reduces the duration of calls that are associated with the least

amount of saving.

We present a mathematical model to determine the worse-case %RI for the HGSP. The param-

eters of this model are G, K, H, L∈Z, and we assume they satisfy G≥ 1, K ≥ 1, and H ≥L≥ 2.

Note that the HGSP always finds an optimal solution for the GDP if L = 1. Recall that after

sorting calls, a call is assigned to each group from each class; hence, after the classes are formed,

one can change the order of the calls inside a class. Therefore, the DAP is equivalent to the fol-

lowing problem: change the order of the calls inside the classes such that the following assignment

is feasible: assign the first call from each class to group 1, the second call from each class to group

2, and so on. Let ζiς ∈Z+, for all i, ς, denote the duration of the ith call in class ς. Thus, group g
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is assigned ζg1, ζg2, · · · , ζgK and hence THg =
∑K

ς=1 ζgς , for all g. Let ζmin,ς , ζmax,ς , for all ς, denote

the minimum and maximum ζiς in class ς. The worst-case %RI problem (WRIP) is as follows:

%WRI = max
100

ζsum

G∑

g=1

[(
K∑

ς=1

ζgς

)
−H

]+
(33)

s.t. ζmin,ς ≤ ζiς ≤ ζmax,ς , ∀i, ς, (34)

ζmax,1 ≤L, (35)

ζmin,ς ≥ ζmax,ς+1, ∀ς ≤K − 1, (36)

ζmin,K ≥ 0, (37)

G∑

i=1

K∑

ς=1

ζiς = ζsum, (38)

ζiς , ζmin,ς , ζmax,ς , ζsum ∈R, ∀i, ς. (39)

Eq. (34) ensures that the ζiς is lower bounded by ζmin,ς and upper bounded by ζmax,ς . The first

class includes the largest ζiς , which must be less than or equal to L. This is guaranteed by Eq.

(35). Eq. (36) assures that every call in class ς is at least as big as the maximum duration of the

calls in class ς + 1. Eq. (37) guarantees that the calls in class K have non-negative durations. Eq.

(38) relates the values of ζsum and ζiς .

In the WRIP, we assume ζiς are continuous variables while they must be integers. Hence, one

could assume integral ζiς that may improve the %WRI; however, the WRIP may become more

difficult to solve. A major drawback of the WRIP that makes it very difficult to solve is the

nonlinearity of the objective function. The numerator of the objective function is a piecewise linear

and convex function, and the denominator ζsum is a variable. For a fixed ζsum, one could use

binary variables to convert the WRIP to a MILP problem; however, according to our experiment,

the obtained MILP problem is significantly more difficult. The following proposition presents and

alternative formulation and an effective approach for solving the WRIP in a reasonable time.

Proposition 6. The WRIP is equivalent to the following problem.

%WRI = max
g∗ = 1, · · · ,G,

G(H −L+1)+1≤ ζsum ≤GH.





max 100
ζsum

∑g∗

g=1

((∑K

c=1 ζgς

)
−H

)

s.t. Eqs. (34)–(39).





(40)
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The proof is given in Appendix E.2. We applied Proposition 6 to a real-size problem with G= 20,

K = 100, H = 180, and L= 4, and obtained that the %WRI is 0.56%. Hence, the aggregation error

is significantly small for real-size problems.

6. Computational Experiment

First, we show the quality of our heuristic approach on a set of mid-size problems. Next, we present

the results obtained from applying our heuristic to a real problem which is provided to us by a

large utility company in the Southern California region.

6.1. Error analysis on mid-sized problems

We use the ECPs for a large region of the Southern California from 2012 to 2014. The number of

day-types is set to 5, 10, and 15, and G= 20 and L= 4. We set K = 6n, H = 10n, and D = 20n,

where 1 ≤ n ≤ 5; hence, K varies between 6 and 30, H varies between 10 and 50, and D varies

between 20 and 100. We use a strictly increasing cost function similar to Fig. 1.

Fig. 7 presents the relative and absolute information errors obtained for different problem sizes,

and for different number of day-types. Each data point corresponds to the average information

error for the years 2012–2014. As expected, the absolute and relative errors decrease as the number

of day-types decreases, with the lower graph corresponding to the errors obtained for the smallest

number of day-types. As n increases, the absolute error modestly increases, which is bounded by

O(
√
n), as indicated by theorem 3. The relative error rapidly decreases as n increases, which is

expected as proven in theorem 3. Overall, Fig. 7 shows that the relative information error decreases

very fast and reaches 0.06%, 0.07%, and 0.23%, for 5, 10, and 15 day-types, respectively. As n

increases, the relative information error is projected to be significantly small.

Fig. 8 depicts the results obtained for the absolute and relative aggregation error for different

problem sizes. In all of our experiments, we use the infeasibility (defined in Section 5.3) as a proxy

for the aggregation error. Our computational experiments suggest that the effect of the number of

day-types, unlike in the case of information error, is not significant. The absolute error is almost
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Figure 7 Information error and its sensitivity to the problem size and the number of day-types.

0

4

8

12

16

1 2 3 4 5

Ab
so

lu
te

 E
rr

or

Problem size (n)

Absolute Aggregation Error

0

0.02

0.04

0.06

0.08

1 2 3 4 5

Re
la

tiv
e

Er
ro

r

Problem size (n)

Relative Aggregation Error
5 day-types
10 day-types
15 day-types

Figure 8 Aggregation error and its sensitivity on problem size and the number of day-types.

constant and the relative error reduces at a very fast rate and reaches 1% for n= 5. Finally, we note

that the total error of our heuristic approach is the sum of the information and aggregation error.

For 5, 10, and 15 day-types, the average (over three years) total relative error is 0.29%, 0.87%, and

0.79%, respectively.

6.2. An industrial instance

We present the results of applying our proposed methodology on a real problem with ECPs from

2012 to 2014. The instance is provided to us by a large utility company in the Southern California

region. In these instances, K = 100, H = 180, D= 365, |Ω|= 10, and L= 4. For managerial consid-

erations, we looked at 5, 10, 15, and 20 customer groups. Fig. 9 exhibits the percentage of saving
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Figure 9 Percentage of saving as the number of groups increases.
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Figure 10 The effects of the number of groups on the aggregation error.

in total power cost as the number of groups increases. The total saving is a function of the number

of customer groups and increases from 2.9% to 8.45% for 5 to 20 groups, respectively.

Fig. 10 shows the absolute and relative aggregation errors for different numbers of groups. The

absolute error increases almost linearly in G, and the relative error is almost constant in G, with

an average of 0.21%. Due to the complexity and size of the industrial instances—i.e., the inability

to optimally solve the AGSP—we can only report the aggregation error. However, we note that

based on our computational experiment for mid-size problems (Section 6.1), the information error

is expected to be less than 0.07%.
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Figure 11 The frequency distributions of calls and hours.

Our solution scheduled calls for 162 days throughout the year and the frequency distribution of

the daily cumulative calls and hours are shown in Fig. 11. For example, in 35 days, 3 calls per day

are scheduled, and in 20 days, a total of 9 hours per day is assigned to groups.

Finally, we note that the impetus behind DLCCs is to reduce peak load consumption and influ-

ence customers’ energy consumption patterns. Fig. 12 shows the before and after ECP patterns for

the first weeks of winter and summer 2014. In winter, the energy consumption fluctuates between

19 and 29 GW/h, while in summer, it varies between 22 and 36 GW/h. According to our solution,

the summer peak load reduces from 36 to 32 GW/h, which may correspond to a reduction in the

energy production rate from 160 to 80 $/MWh (see Fig. 1).

7. Concluding Remarks

We analyze the problem of efficiently implementing DLCCs used by many utility companies in

developed countries. We optimally solve an special case of the problem in which the lengths of

interventions are equal and fixed. A heuristic approach is proposed based on approximating the

stochasticity, and aggregating the customer groups and forming a representative group. Our heuris-

tic approach is asymptotically optimal and its worst-case relative error is O( 1√
n

). The quality of

our heuristic approach under different settings were experimentally verified. An industrial instance

of this problem is thoroughly which results in approximately 8% in the energy generation cost.
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Figure 12 The peak load reduction during the first weeks of winter and summer 2014.

Finally, we emphasize that our approach can also be used to efficiently design DLCCs and set

essential contract parameters.

We offer the following directions for future research. First, although we assumed the customer

groups are identical in terms of their demands and contracts, this may not be true in some demand-

response programs. Second, in the DLCCs that were considered in this paper, the peak demand

is eliminated—not shifted—through the scheduled interventions. However, in some programs, in

anticipation of being called for a certain period, a customer group may shift their energy con-

sumption to before and after that period. This phenomenon is referred to as “the shoulder effect”.

Finally, this paper assumes that customers can subscribe to DLCCs only at the beginning of the

planning horizon. However, we note that there are demand-response programs that allow customers

subscribe any time throughout the year. Future research could look at demand-response programs

with non-identical groups, shoulder effects, and/or rolling contracts.
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Appendix A: Complexity Proofs

A.1. Proof of Proposition 1(a)

We show that the GDP with G= 2 is as hard as the 2-partition problem, which is known to be

weakly NP-complete (Garey and Johnson 1979). Assume that we are given a general instance of the

2-partition problem consisting of the positive integers α1, α2, . . . , α2D, and A such that
∑2D

d=1αd =

2A. The question is: Can α1, α2, . . . , α2D be partitions into two subsets with equal size and equal

number of elements?

Consider the following specific instance of the GDP. Let G= 2 and consider a planning horizon

of 2D days where in day d the height of the ECP is equal to 1 at periods 1, . . . , αd and 0 at periods

αd + 1, . . . , T . Thus, there are 2D ECPs with durations α1, α2, . . . , α2D (see Fig. 13). We assume

T ≥maxd=1,...,2D{αd} and L≥maxd=1,...,2D{αd}. We assume f(1) = 1 meaning that if we assign αd

to a group, we achieve a saving of αd. Let K =D and H =A.

α1 α2 α2D−1 α2D

1 2 2D− 1 2D

...

days

Figure 13 The ECPs for the planning horizon of 2D days.

Case 1: If the 2-partition has a solution, then the optimal solution of the GDP is obtained by

assigning partitions to groups. The saving that is achieved by this assignment is 2A.

Case 2: If the 2-partition does not have solution, we show that the GDP cannot have a solution

with a total saving of 2A. If the 2-partition does not have solution, then for all partitions with

equal size, there exists Λ> 0 such that the size of the partitions are A−Λ and A+ Λ. Assigning

these partitions to the groups, one could achieve savings of A−Λ and A, respectively. Therefore,

the total saving is 2A−Λ which is strictly less than 2A.

To complete the proof, we note that the GDP with two groups is solved in a pseudo polynomial

time, which implies that the problem is weakly NP-complete.

A.2. Proof of Proposition 1(b)

We show that the GDP is as hard as the 3-partition problem, which is known to be strongly NP-

complete (Garey and Johnson 1979). Assume that we are given a general instance of the 3-partition

problem consisting of positive integers α1, α2, . . . , α3G, and A such that
∑3G

d=1αd is divisible by G

and A= 1
G

∑3G

d=1αd, and A
4
≤ αd ≤ A

2
, for all d. The question is: Can α1, α2, . . . , α3G be partitioned

into G subsets with equal size and equal number of elements?
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Consider the following specific instance of the GDP, with G groups. Let D = 3G, and assume

that the ECP height is 1 in periods 1, . . . , αd and 0 in periods αd + 1, . . . , T , on day d, for all d.

Thus, there are 3G energy consumption periods with durations α1, α2, . . . , α3G. We assume T ≥
maxd=1,...,3G{αd} and L≥maxd=1,...,3G{αd}. We assume f(1) = 1 meaning that if we assign αd to a

group, we achieve a saving of αd. Let K = 3 and H =A.

Case 1: If the 3-partition has a solution, then the optimal solution of the GDP is obtained by

assigning the partitions to groups. The saving that is achieved by this assignment is GA.

Case 2: The 3-partition does not have a solution. Let us partition α1, α2, . . . , α3G intoG subsets with

equal number of elements and assign each set to a group. Hence, each group receives exactly 3 ele-

ments. There exists a positive integer Λ> 0 and groups g′ and g′′ such that
∑

d:αd is assigned to g′ αd ≥
A+Λ and

∑
d:αd is assigned to g′′ αd ≤A−Λ. Therefore, the total saving of this assignment is less than

or equal to GA−Λ and hence is strictly less than GA. Note that this holds for all such partitions

with equal number of elements. Therefore, the optimal solution of the GDP is strictly less than

GA.

Appendix B: FSP Proofs

B.1. Proof of Proposition 2

Let s∗t denote the optimal solution to AFSDPr. If AFSDPr results in a solution in which all s∗t ’s

are integer, then the obtained solution is an optimal solution to AFSDP. Consider the case where

some of the s∗t ’s are fractional. We define, for each t, S∗t :=
∑min{T−L+1,t}

t′=max{1,t−L+1} s
∗
t′ which is the number

of groups who are on call during time period t in the optimal solution. Two or more S∗t ’s must be

fractional. Consider the following linear program (P1).

max
T∑

t=1

∂f̂d,t(bS∗t c)
min{T−L+1,t}∑

t′=max{1,t−L+1}
st′ , (41)

s.t. Rt ≥ rt(ωd)−
min{T−L+1,t}∑

t′=max{1,t−L+1}
st, ∀t (42)

T−L+1∑

t=1

st =Kd (43)

bS∗t c ≤
min{T−L+1,t}∑

t′=max{1,t−L+1}
st′ ≤ dS∗t e, ∀t, (44)

st ∈R+, ∀t≤ T −L+ 1. (45)

We note that s∗t are feasible for P1. A feasible solution to P1 is also feasible for AFSDPr and

the objective values of AFSDPr and P1 differ by a constant that is independent of st’s. We show

next that all the extreme points of P1 are integer. We note that P1 contains T + 1 constraints
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and T −L+ 1 variables. We define ℵt :=
∑min{T−L+1,t}

t′=max{1,t−L+1} st′ , for all 1≤ t≤ T . Moreover, we define

ℵ0 :=
∑T−L+1

t′=1 st′ , and ℵt := 0, for all t > T .

Assume that T = αL + β, where α is an integer and 0 ≤ β < L. Then, ℵ0 =
∑k+1

i=0 ℵj+Li for

j = 1, . . . ,L. Thus constraints corresponding to ℵT−L+1, . . . ,ℵT are redundant constraints. They

are obtained through elementary row operations on the remaining T −L+ 1 constraints. We note

that ℵ0 and ℵ1, . . . ,ℵT are independent of each other as each of them introduces one new variable.

Consider the solution to the following set of equations:

ℵ0 = RHS0 (46)

ℵt = RHSt, ∀t : 1≤ t≤ T −L, (47)

where all the right hand side variables are integers. The solution to this set is easily found, because

ℵ1 = s1, ℵ2 = s1 + s2, and so on. Each constraint introduces exactly one new variable. All the st’s

will be integer.

Any other independent set of T −L+ 1 constraints from the set ℵ0, . . . ,ℵT can be transformed

to the set ℵ0, . . . ,ℵT−L+1 through elementary row operations that does not involve any division,

hence maintaining the integrality of the right hand side. Thus, every extreme point of the polytope

corresponding to P1 is an integer. This implies that there exists a set of integer extreme points

such that their convex combination is s∗, the optimal solution to AFSDPr.

Using property (iii) of the function f , we have, for z′ 6= z′′, ∂f̂d,t(z
′) 6= ∂f̂d,t(z

′′). Then, if s∗ is

not an extreme point, then there is a strict improvement direction. Hence P1 contains an integer

solution that has a higher objective than that given by s∗. This in turn implies that s∗ is not

optimal to AFSDPr. Thus we proved that AFSDPr yields integer solutions. �

B.2. Proof of Lemma 1

We prove this claim using an induction. Before starting the for -loop, we have TCg = 0, for all g.

Assume that in iteration d̂, we have |TCg′−TCg′′ | ≤ 1, for all g′, g′′. Sort TCg’s in a non-decreasing

order TC[1] ≤ TC[2] ≤ · · · ≤ TC[G]; hence, TC[1] + 1≥ TC[G]. If TC[1] + 1 = TC[G], then there exists

[ġ] such that TC[1] = · · ·= TC[ġ]−1 = TC[ġ]− 1 = · · ·= TC[G]− 1. If TC[1] = TC[G], let [ġ] = [G] + 1.

Let TC := TC[1]. Then, TC[g] = TC, for all [g] such that [g]< [ġ], and TC[g] = TC + 1, for all [g]

such that [g]≥ [ġ].

There exists [g̈] such that the for -loop assigns a call to each group [g] such that [g] < [g̈]. Let

[g]min := min{[ġ], [g̈]} and [g]max := max{[ġ], [g̈]}. In iteration d̂+ 1, we have:

TC[g] =





TC + 1 , ∀[g] : [g]< [g]min

TC , ∀[g] : [g]min ≤ [g]< [g]max, if [ġ]> [g̈]

TC + 2 , ∀[g] : [g]min ≤ [g]< [g]max, if [ġ]< [g̈]

TC + 1 , ∀[g] : [g]≥ [g]max

Therefore, in iteration d̂+ 1, we have |TCg′ −TCg′′ | ≤ 1, for all g′, g′′. So, the proof is complete.
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B.3. Proof of Lemma 2

According to lemma 1, for d=D− 1, we have |TCg′ −TCg′′ | ≤ 1, for all g′, g′′. Now consider day

D. We assign min{KD,G} or less but we consider assigning min{KD,G} because if we can assign

min{KD,G} to groups, then we can assign smaller values as well. One of the following cases can

happen:

Case 1: KD <G; hence, we assign KD. We claim that in this case each group has at most 1 call

available—i.e., K −TCg ≤ 1, for all g. This claim is proven as follows. Note that at the beginning

of iteration D we have assigned TCg calls to group g, and group g has K − TCg unused calls.

The total unused calls is
∑

g(K − TCg) = GK −∑g TCg = KD <G. Assume there exists ĝ such

that K − TCĝ > 1, then TCĝ < K − 1. Using Lemma 1, we must have TCg ≤ K − 1, for all g,

with strict inequality for ĝ. Therefore,
∑

g TCg <GK−G and hence GK−∑g TCg >G. This is a

contradiction. Thus, each group has at most 1 call available. Therefore, to assign KD, we call each

group g with an available call.

Case 2: KD ≥G; hence, we assign G. We claim that in this case each group has at least 1 call

available—i.e., K − TCg ≥ 1, for all g. We prove this claim by contradiction. Assume there exists

ĝ such that K−TCĝ < 1. Then, TCĝ >K− 1. Using Lemma 1, we must have TCg ≥K− 1, for all

g, with strict inequality for ĝ. Therefore,
∑

g TCg >GK −G and hence KD =GK −∑g TCg <G.

This is a contradiction. Thus, each group has at least 1 call available. Therefore, to assign G calls,

we call all groups.

Appendix C: Information Error Proofs

C.1. Proof of Lemma 3

We prove the following relationship, for all n∈Z, n≥ 1, which proves the lemma.

E[v
(n)
UBH] = v

(n)
RAGDP ≥ v(n)AGDP ≥E[v

(n)
AGSP]≥E[v

(n)
LBH].

Note that E[v
(n)
UBH] =

∑nD

d=1

∑
j qjpω(j)θj =

∑
j

∑nD

d=1

x∗j
D
θj = n

∑
j θjx

∗
j = v

(n)
RAGDP, for all n∈Z, n≥

1. Because RAGDP(n) is a relaxation of AGDP(n), then v
(n)
RAGDP ≥ v(n)AGDP, for all n ∈ Z, n ≥ 1.

Recall that in AGDP(n) we assume that npωD days are from type ω, for all ω. Also, recall that

we assume pωD is integer for all ω. Note that the optimal value of AGDP(n) is concave in the

number of days of type ω, for all ω. Also, using Jensen’s inequality, we have v
(n)
AGDP ≥E[v

(n)
AGSP], for

all n∈Z, n≥ 1. Because LBH(n) provides a feasible solution to AGSP(n), then E[v
(n)
AGSP]≥E[v

(n)
LBH],

for all n∈Z, n≥ 1.
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C.2. Proof of Lemma 4

For all γ and d, we have:

E[(∆(n)
γ (d))2|=d] =

∑

j

pω(j)qj
(
aγj −

∑

j′

pω(j′)qj′aγj′
)2 ≤ 1

4
a2γ,max.

This inequality follows from Popoviciu’s inequality according to which V ar(x)≤ 1
4
(x−x)2, where

x ≤ x ≤ x with probability 1. We note that
∑

j pω(j)qj(aγj −
∑

j′ pω(j′)qj′aγj′)
2 is the variance of

aγ1, . . . , aγJ . Also note that for all j, 0≤ aγj ≤ aγ,max. Hence, the variance does not exceed 1
4
a2γ,max.

To complete the proof, we note that E[(
∑d

d′=1 ∆(n)
γ (d′))2|{=d}] =

∑d

d′=1 E[(∆(n)
γ (d′))2|=d′ ] because

considering the filtration {=d}, the error terms, ∆(n)
γ (d′), are independent.

C.3. Proof of Lemma 5

The probability P (d∗(n) < d) is found by calculating the probability of the violation of condition

(†) for some resource γ and for some days d̂ < d. Therefore, we have:

P (d∗(n) <d) = P
( d̂∑

d′=1

∆(n)
γ (d′)>ncγ −

d̂

D
aγx

∗− aγ,max, for some γ, d̂ < d
)

≤
∑

γ

P
( d̂∑

d′=1

∆(n)
γ (d′)>ncγ −

d̂

D
aγx

∗− aγ,max, for some d̂≤ d
)

Since, d̂≤ d, we replace d̂ with d in the right-hand-side of the condition; hence, the right-hand-side

becomes a constant (independent of d̂). Therefore, we can take the maximum of
∑d̂

d′=1 ∆(n)
γ (d′)

over d̂= 1, . . . , d, and hence we have:

P (d∗(n) <d) ≤
∑

γ

P
(

max
d̂=1,...,d

d̂∑

d′=1

∆(n)
γ (d′)>ncγ −

d

D
aγx

∗− aγ,max

)

≤
∑

γ

P
(

max
d̂=1,...,d

∣∣
d̂∑

d′=1

∆(n)
γ (d′)

∣∣≥ n
(
cγ −

d

nD
aγx

∗)− aγ,max

)

≤
∑

γ

E
[(∑d

d′=1 ∆(n)
γ (d′)

)2]
(
n(cγ − d

nD
aγx∗)− aγ,max

)2 (48)

≤
∑

γ

d
( 2n

aγ,max

(cγ −
d

nD
aγx

∗)− 2
)−2

(49)

Inequality (48) follows from Doob’s submartingale inequality, and inequality (49) follows from

applying Lemma 4. To complete the proof, we note that P (d∗(n) <d)≤ 1, for all n and d.
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Appendix D: HGSP Proofs

D.1. Proof of Remak 2

We first note that the objective function can be alternatively formulated as the following piecewise

linear and convex function.

Z∑

z=1



∂

2f(z)




T∑

t=1

[
rt(ωd)− z+ 1−

(
min{L,t}∑

i=1

L(t)∑

`=i

s(t−i+1)`

)]+



 , (50)

where Z ∈Z is an upper bound on the ECP height. We linearize the objective function by defining

the non-negative variables εzt, for all z, t, replacing
[
rt(ωd)− z+ 1−

(∑min{L,t}
i=1

∑L(t)
`=i s(t−i+1)`

)]+

with εzt, for all z, t, and adding constraints to ensure εzt ≥ rt(ωd) − z + 1 −(∑min{L,t}
i=1

∑L(t)
`=i s(t−i+1)`

)
, for all z, t. Since we solve a minimization problem, this constraint is

always satisfied as equality unless the right-hand-side is negative in which case εzt = 0.

D.2. Proof of Proposition 3

(a) Note that we form classes based on a sorted list of calls; hence, there exists ς̂ such that every

class 1, · · · , ς̂ − 1 has exactly G calls with nonzero durations, and every class ς̂ + 1, · · · ,K has no

call with nonzero duration. Moreover, we assign exactly one call from each class to each group.

Thus, each group receives exactly one call from each class 1, · · · , ς̂ − 1 and at most one call from

class ς̂. Therefore, a group receives either ς̂ − 1 or ς̂ calls; hence, |TCg′ −TCg′′ | ≤ 1, for all g′, g′′.

(b) Let ζiς ∈Z+, for all i, ς, denote the duration of the ith call in class ς. Since we sort the calls

in a non-increasing length order, we have ζ11 ≤ L and ζGK ≥ 0; hence, ζ11 − ζGK ≤ L. Moreover,

we have ζGς ≥ ζ1(ς+1), for all ς ≤K − 1 because of the sorted list. Finally, the maximum difference

between the durations of the calls in a class is (ζ1ς − ζGς), for all ς. Thus, we have:

K∑

ς=1

(ζ1ς − ζGς) = ζ11− (ζG1− ζ12)− · · ·− (ζG(K−1)− ζ1K)− ζGK ≤ ζ11− ζGK ≤L.

Therefore,
∑K

ς=1 (ζ1ς − ζGς) ≤ L. This means that the sum of the class differences is upper

bounded by the total difference which itself is upper bounded by L. The DAP assigns exactly one

call from each class to each group. Consider the groups g′ and g′′. The difference (THg′ −THg′′) is

maximized if group g′ is assigned the maximum duration from each class and group g′′ is assigned

the minimum duration from each class.

THg′ −THg′′ =
∑

iς

λiςg′ζiς −
∑

iς

λiςg′′ζiς

≤
∑

ς

(
max
i
{ζiς}

)
−
∑

ς

(
min
i
{ζiς}

)

=
∑

ς

ζ1ς −
∑

ς

ζGς =
∑

ς

(ζ1ς − ζGς)≤L.

Hence, the proof is complete and |THg′ −THg′′ | ≤L, for all g′, g′′.
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D.3. Proof of Proposition 4

Adding slack variables to Eq. (31), the DAPr is equivalent to the following system of equations.

G∑

g=1

λiςg = 1, ∀i, ς, (51)

G∑

i=1

λiςg = 1, ∀ς, g, (52)

∑

iς∈Dd

λiςg +σgd = 1, ∀g,Dd, (53)

where, λiςg, for all i, ς, g, and σgd, for all g, d, are non-negative continuous variables. We note

that λiςg cannot take a value greater than 1 because the right-hand-side values are 1, all of the

coefficients in the left-hand-sides are 1, and all variables are non-negative and continuous. Thus,

constraint λiςg ≤ 1, for all i, ς, g, is automatically ensured. Thus, the coefficient matrix of DAPr

is a (2KG+DG)× (KG2 +DG)-matrix of zeros and ones as follows.

A=




IKG IKG · · · IKG 0
B 0 · · · 0 0
0 B · · · 0 0
...

...
. . .

... 0
0 0 · · · B 0
E 0 · · · 0
0 E · · · 0 IDG
...

...
. . .

...
0 0 · · · E




, BK×KG =




1
′
G 0 · · · 0

0 1
′
G · · · 0

...
...

. . .
...

0 0 · · · 1′G


 ,

and E is a (D×KG)-matrix of zeros and ones. The following remark states that the matrix A has

(DG+ 2KG−K) linearly independent rows and columns. The proof is standard and follows from

performing some elementary operations on A.

Remark 4. The rank of matrix A is (DG+ 2KG−K).

It is seen that B is a matrix of zeros and ones. Each column of B has exactly one 1 and exactly

(K−1) zeros. Moreover, each row of B has exactly G ones and exactly (K−1)G zeros. We similarly

characterize the columns and rows of E in the following remark. The proof is standard and follows

from analyzing Eq. (53).

Remark 5. Matrix E has the following properties: (i) each entry is either 0 or 1, (ii) each column

has exactly one 1, and (iii) each row has at most G ones. Moreover, if D=K, then each row of E
has exactly G ones.

We partition E into two sub-matrices as follows: E1 consists of the rows of E that have exactly G

ones, and E2 consists of the rows of E that have strictly less than G ones. Let Φ := {λ∈RKG|Bλ=
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1K ,E1λ = 1D1
,E2λ ≤ 1D2

, λ ≥ 0}. In the following, we show that Φ is a nonempty and integral

polyhedron.

Adding slack variables to E2λ ≤ 1D2
, the coefficient matrix becomes



B 0
E1 0
E2 ID2


 and the right-

hand-side vector is 1(K+D). Recall that each column of B and E has exactly one 1 (see Remark 5);

hence, each column of the coefficient matrix has at most 2 ones. Additionally, if there are 2 ones

in a column of the coefficient matrix, one of them is in the first K rows and the other one is in the

last D rows. Therefore, the coefficient matrix is totally unimodular meaning that every extreme

point of the feasible region is integral and thus the set Φ is an integral polyhedron.

We next prove that Φ is nonempty. Consider the following LP problem: max 0 s.t. λ ∈ Φ. The

dual problem is as follows.

min 1
′

Gχ1 + 1
′

D1
χ2 + 1

′

D2
χ3 (54)

s.t.



B
E1
E2



′ 

χ1
χ2
χ3


≥ 0 (55)

χ3≥ 0, (56)

where, χ1, χ2, χ3 are the dual variables. One could see that the dual problem is feasible because

χ1 = 0, χ2 = 0, and χ3 = 0 satisfy the constraints. We need to show that the optimal value for the

dual problem is finite. Consider the relaxation of the dual problem that is obtained by multiplying

Eq. (55) by 1
′
K+D from the left. This results in the following inequality.



G1K
G1D1

ℵ



′ 

χ1
χ2
χ3


≥ 0 (57)

where, ℵ ∈RD2 and ℵ ≤G1D2
. Thus, the relaxation of the dual problem includes Eqs. (54), (56),

and (57). Note that every feasible solution to the dual problem is also feasible for the relaxation

problem but the converse may not be true. Eq. (57) can be written as follows.

G1
′

Kχ1 +G1
′

D1
χ2 +ℵ′χ3≥ 0

=⇒G
(
1
′

Kχ1 + 1
′

D1
χ2 + 1

′

D2
χ3
)
−
(
G1

′

D2
χ3−ℵ′χ3

)
≥ 0

=⇒ 1
′

Kχ1 + 1
′

D1
χ2 + 1

′

D2
χ3≥ 1

G

(
G1D2

−ℵ
)′
χ3

=⇒ 1
′

Kχ1 + 1
′

D1
χ2 + 1

′

D2
χ3≥ 0

Thus, the optimal value of the relaxation of the dual problem is bounded below; hence, the

optimal value of the dual problem is bounded. Therefore, since the dual problem has a finite optimal

solution, then the primal problem also has a solution. Thus, we proved that Φ is nonempty.
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Appendix E: Aggregation Error Proofs

E.1. Proof of Proposition 5

We show that if ζsum ≤G(H −L+ 1), then THg ≤H, for all g. We use a contradiction as follows.

Assume ζsum ≤G(H −L+ 1) and there exists g′ such that THg′ ≥H + 1. Using Proposition 3(b),

we must have THg ≥H−L+1, for all g. Note that if there exists g′′ such that THg′′ ≤H−L, then

THg′−THg′′ ≥L+1 which contradicts Proposition 3(b). Hence, we showed that THg ≥H−L+1,

for all g. Then, ζsum =
∑

g THg >G(H−L+1) which contradicts our earlier assumption. Therefore,

THg ≤H, for all g.

E.2. Proof of Proposition 6

Consider G(H−L+ 1) + 1≤ ζsum ≤GH. We first show that this interval is nonempty if L≥ 2. We

have:

1≤ ζsum−G(H −L+ 1)≤G(L− 1)

The right-hand-side is lower bounded by G. If G= 1, we have at least one feasible point. There-

fore, the interval for ζsum is always nonempty. Using Proposition 5, if ζsum ≤G(H −L+ 1), then

the HGSP solution is optimal and hence %RI = 0. Thus, the optimal value of ζsum must satisfy

G(H − L + 1) + 1 ≤ ζsum ≤ GH. Moreover, since this interval is nonempty and %RI is always

non-negative, we can limit our search to this interval.

Let us fix ζsum and focus on maximizing the numerator of the objective function. We note that,

for some groups, we have THg >H, and for the remaining groups we have THg ≤H. Thus, we can

assume that the groups with THg >H are located first in the list. Therefore, there must exist an

optimal solution that satisfies the following condition: there exists g∗ such that THg >H for all

g≤ g∗ and THg ≤H for all g > g∗. Thus, we can limit our search to finding the optimal g∗.

Appendix F: Notations

Abbreviations:
AFSDP Aggregate fixed-length single day problem
AFSDP∗ An alternative formulation for the AFSDP
AFSDPr The linear programming relaxation of the AFSDP∗

AFSP Aggregate fixed-length stochastic problem
AGDP Aggregate general deterministic problem
AGSP Aggregate general stochastic problem
ASDP Aggregate single day problem
ASDP∗ An alternative formulation for the ASDP
DAP Disaggregation problem
DAPr The LP relaxation of the DAP
DLCC Direct load control contract
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DP Dynamic programming
ECP Energy consumption profile
FLP Fixed-length policy
FSP Fixed-length stochastic problem
GDP General deterministic problem
GSP General stochastic problem
HGSP Our heuristic approach for solving the GSP
LBH Lower-bound heuristic
LP Linear programming
MILP Mixed-integer linear programming
RAGDP The LP relaxation of the AGDP
SDP Single day problem
UBH Upper-bound heuristic
WRIP worst-case %RI problem

Notations:
g= 1, . . . ,G Groups.
d= 1, . . . ,D Days.
t= 1, . . . , T Time periods in a day.
ω ∈Ω Day-types.
ωd Type of day d.
ldg Duration of the call for group g in day d.
mdg 1, if group g reduces their consumption in day d (if ldg > 0), and 0 otherwise.
hdg Remaining hours that group g can reduce their consumption in days d, . . . ,D.
kdg Remaining number of times that group g can be called in days d, . . . ,D.
Ld Vector Ld = (ld1, . . . , ldG)
Md Vector Md = (md1, . . . ,mdG)
Hd Vector Hd = (hd1, . . . , hdG)
Kd Vector Kd = (kd1, . . . , kdG)
L Upper bound on the duration of a call.
H Upper bound on the total duration of the calls for a group in the entire horizon.
K Upper bound on the number of the calls for a group in the entire horizon.
Θd The set of feasible decisions (Ld,Md) on day d.
Θf
d The set of feasible decisions under FLP on day d.

Θaf
d The set of feasible decisions for the AFSP on day d.

Θad
d The set of feasible decisions for the AGDP on day d.

I(.) The indicator function, i.e., I(z) = 1 if z > 0 and otherwise I(z) = 0.
Vd(Hd,Kd) The optimal cost for days d, d+ 1, . . . ,D given Hd available time and Kd avail-

able number of calls to groups.
Vf
d(Kd) The optimal cost for days d, d+ 1, . . . ,D under FLP, given Kd available calls.
Vaf
d (Kd) The optimal cost for days d, d+1, . . . ,D for AFSP, given a total of Kd available

calls.
Vad
d (Hd,Kd) The optimal cost for days d, d+ 1, . . . ,D for the AGDP, given a total of Hd

available hours and Kd available calls.
ψ(Ld, ωd) The minimum cost for day d of type ωd using the calls Ld = (ld1, . . . , ldG).
ψaf(Kd, ωd) The minimum cost for AFSDP for day d of type ωd using Kd calls.
ψad(Hd,Kd, ωd) The minimum cost for the ASDP on day d of type ωd using Hd hours and Kd

calls.
rt(ωd) The height of ECP in period t and day d.
f(.) Energy cost function.
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f̂d,t(.) Energy saving function at period t of day d. Note: f̂d,t(z) measures the saving
at period t of day d given that the height of the ECP has reduced to z.

∂f(.) The first difference of function f , i.e., ∂f(z) := f(z)− f(z− 1), z ∈Z, z ≥ 1.
∂2f(.) The second difference of function f , i.e., ∂2f(z) := ∂f(z)−∂f(z−1), z ∈Z, z ≥

1.
ugt 1 if group g is on call in period t of day d, and 0 otherwise.
wgt 1 if group g begins reducing their consumption in period t of day d, and 0

otherwise.
[.]+ The function that is defined as [z]+ := max{z,0}.
Kd The total number of calls to be used in day d.
Hd The total hours to be used in day d.
Kd The number of available calls that can be used in days d, d+ 1, · · · ,D.
Hd The available hours that can be used in days d, d+ 1, · · · ,D.
st The number of groups that start reducing their energy consumption at period

t in day d.
st` The number of calls with duration ` and starting time t.
Rt The height of the ECP at period t of day d after the customers reduce their

energy consumption.
Dd The set of calls that we must use in day d based on the optimal solution of

AFSP.

D Defined as D :=
⋃D

d=1Dd.
TCg The total number of calls to group g in the entire planning horizon.
THg The sum of the call durations that are assigned to group g in the entire planning

horizon.
n problem size, n∈Z, n≥ 1.

v
(n)
GSP The optimal saving for the GSP where the problem size is n.

v
(n)
HGSP The HGSP saving where the problem size is n.

v
(n)
AGDP The optimal saving for the AGDP where the problem size is n.

v
(n)
AGSP The optimal saving for the AGSP where the problem size is n.

v
(n)
RAGDP The optimal saving for the RAGDP where the problem size is n.
ρ A non-negative constant, independent of n, as the upper bound on the aggre-

gation error.
j = 1, . . . , J Offers.
qj The allocation probability for offer j.
xj The number of times that offer j is made in the planning horizon.

x∗(n) The vector (x∗1
(n), . . . , x∗J

(n)) and the optimal solution of the RAGDP(n).
γ = 1, . . . ,Γ Resources.
aγj The amount of resource γ used when offer j is made.
cγ The total available resource γ at the beginning of the planning horizon.
aγ The vector (aγ1, . . . , aγJ).
aγ,max Defined as maxj{aγj} for all γ.
θj The saving from offer j.
θmax Defined as θmax := maxj{θj}.
ω(j) The day-type in which offer j can be used.
pω The proportion of days of type ω (the probability of day-type ω).

d∗(n) The minimum of nD and the last day in which the condition (†) is satisfied.
∆(n)
γ (d) The deviation from the expected resource usage for γ on day d.
=d The accumulated information up to day d.
E[.] The expected value function.
P (.) The probability function.
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|.| The cardinality/absolute value function.
d.e The ceiling function.
L(t) Defined as L(t) := min{L,T − t+ 1} which denotes the maximum duration of

a call starting from t.
st` The number of calls with duration ` and starting time t.
η ∈Dd Calls that are scheduled on day d. A call is in the form of η= (st(η), |η|) where

st(η)∈Z+ is the starting time and |η| ∈Z+ is the length of the call.
ς = 1, . . . ,K Classes.
λiςg 1 if call i from class ς is assigned to group g, and 0 otherwise.
Gg The set of calls that are assigned to group g.
B, E1, E2 The coefficient matrices for the DAP.
Φ Defined as Φ := {λ∈RKG|Bλ= 1K ,E1λ= 1D1

,E2λ≤ 1D2
, λ≥ 0}.

ζsum The sum of the durations of all calls.
δ Defined as δ := maxω{ψAD(1,1, ω)}.
ζiς The duration of the ith call in class ς.
ζmin,ς , ζmax,ς The minimum and maximum ζiς in class ς.
%RI Percentage of relative infeasibility
%WRI Worst-case for %RI
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Endnotes

1. http://www.sandc.com/en/outages#Solutions

2. http://www.popularmechanics.com/science/energy/a6013/how-a-smarter-grid-can-prevent-

blackouts/

3. Creating identical groups may be somewhat difficult in some situations; however, according to

the energy company we are working with, it is common to assume there are identical groups with

the same contracts and power consumption.
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