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Abstract: Capacity Rights and Full Cost Transfer Pricing

This paper examines the theoretical properties of the practice of full cost transfer

pricing in multi-divisional firms. In our model of a multi-divisional firm, divisional

managers are responsible for the initial acquisition of productive capacity as well as

its utilization in subsequent periods, once operational uncertainty has been resolved.

We refer to a transfer pricing rule as a full cost rule if the discounted sum of transfer

payments is equal to the initial capacity acquisition cost and the present value of

all subsequent variable costs of output supplied to a division. Our analysis identifies

environments where a suitable variant of full cost transfer pricing induces efficiency in

both the initial investments and the subsequent output levels. Our study also high-

lights the need for a proper integration of the divisional control rights over capacity

investments and the valuation rules for intracompany transfers.



1 Introduction

The transfer of intermediate products and services across divisions of a firm is fre-

quently valued at full cost. Surveys and textbooks consistently report that in contexts

where a market-based approach is either infeasible or unreliable, cost-based transfer

pricing is the most prevalent method for both internal managerial and tax report-

ing purposes.1 At the same time, case studies and managerial accounting textbooks

have pointed out consistently that full cost transfer pricing will frequently result in

sub-optimal resource allocations. The objective of this paper is to investigate the

incentive properties of full cost transfer pricing in multi-divisional firms. Specifically,

we seek to identify environments in which full cost transfer pricing “works,” that is,

it creates time-consistent incentives for divisional managers.2

A key feature of our model is that divisional managers are responsible for initial

acquisition of productive capacity as well as its subsequent utilization in future peri-

ods after resolution of demand uncertainty. We seek to characterize transfer pricing

mechanisms that induce divisional managers to make efficient capacity investment

and utilization decisions. Our criterion for incentive compatibility follows the liter-

ature on goal congruent performance measures such as Rogerson (1997), Dutta and

Reichelstein (2002), Baldenius et al.(2007), and Nezlobin et al.(2015). Accordingly,

the divisional performance measures must in any particular time period be congruent

with the objective of maximizing firm value. Put differently, regardless of the man-

agers’ planning horizons and intertemporal preferences, a goal congruent mechanism

must induce (i) the efficient levels of capacity investments upfront, and (ii) the effi-

cient production quantities in subsequent time periods after the resolution of revenue

uncertainty in those periods.

1See, for instance, Eccles and White (1988), Ernst & Young (1993), Tang (2002), Feinschreiber
and Kent (2012), Datar and Rajan (2014), and Zimmerman (2016).

2The perspective in this paper is similar to that underlying the literature on the use of full cost
measures for pricing and capacity expansion decisions. See, for example, Banker and Hughes (1994),
Balachandran et al.(1997), Goex (2002), Balakrishan and Sivaramakrishnan (2002), Gramlich and
Ray (2016), and Reichelstein and Sahoo (2018). While these studies examine the role of full cost
from a central planning perspective, our focus is on decentralization and management control.
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Numerous theoretical and empirical studies have examined the performance of

cost-based transfer pricing.3 Among these studies, Dutta and Reichelstein (2010) is

structurally closest to the analysis in this paper. Their findings identify conditions

under which full cost transfer pricing will lead to efficient outcomes. However, while

capacity investments are costly, there are no subsequent operating costs associated

with producing output in their model. Unlike our analysis in this paper where it

may be efficient not to exhaust the available capacity in bad states of the world,

capacity is always fully utilized in Dutta and Reichelstein (2010). Their analysis thus

abstracts away from one of the central points featured, for example, in the HBS case

study “Polysar Limited” (Simons, 2000). A key takeaway from this case is that under

full cost transfer pricing the buying division tends to reserve too much production

capacity because demand for its product is uncertain and the internal pricing rule

charges the division only for the share of full cost that pertains to the capacity actually

utilized.

Our model considers two divisions that sell a product each in separate markets.

Due to technical expertise, the upstream division installs and maintains all produc-

tive capacity. It also produces the output sold by the downstream division. For

performance evaluation purposes, the upstream division is therefore viewed as an in-

vestment center, while the downstream division, having no capital assets, is merely a

profit center. The periodic transfer payments from the upstream to the downstream

division depend on the initial capacity choices and the current production levels. We

refer to a transfer pricing rule as a full cost rule if the discounted sum of transfer

payments is equal to the present value of cash outflows associated with the capacity

assigned to the downstream division and all subsequent output services rendered to

that division. In particular, a two-part pricing rule that charges in a lump sum fashion

for capacity in each period in addition to variable charges, based on actual production

volumes, will be considered a full-cost transfer price. Thus full cost transfer pricing

3A partial list of references includes Eccles and White (1988), Vaysman (1996), Baldenius et al.
(1999), Sahay (2002), Goex and Schiller (2007), Pfeiffer et al.(2009), Baldenius (2008), and Bouwens
and Steens (2016).
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does not necessarily run into the problem of double marginalization that results from

the buying division internalizing a unit charge based on cost components that are

sunk (Datar and Rajan, 2014, and Zimmerman, 2016).

We distinguish two alternative scenarios depending on whether the divisions’ prod-

ucts can share the same capacity assets. In the dedicated capacity scenario, the prod-

ucts require different productive assets, and hence the capacity cannot be shared

across the divisions. Private information at the divisional level then makes it natural

to give each division unilateral capacity rights. We identify production and infor-

mation environments where a suitable variant of full cost transfer pricing induces

efficient outcomes. Under certain conditions, the simplistic full cost transfer pricing

rule featured in the Polysar case can be modified to obtain a goal congruent solution.

Essential to this finding is that the buying division now also faces excess capacity

charges.4 While such excess capacity charges will not be imposed in equilibrium,

the potential threat is sufficient to correct for the bias inherent in simplistic full cost

transfer pricing.

In the scenario of dedicated capacity, we identify production and market envi-

ronments where some variant of full cost transfer pricing induces efficient outcomes.

We find the preferred transfer pricing rule varies depending on whether the value

of capacity is expected to change over time and whether, given an efficient capacity

choice in the first place, it will at times be advantageous to idle some of the available

capacity.5 Common to these pricing rules is that the fixed cost charges for capacity

must be equal to what earlier literature has referred to as the “user cost of capital”6

4Our solution here is consistent with prescriptions in the managerial accounting literature on how
to allocate the overhead costs associated with excess capacity, e.g., Kaplan (2006) and Martinez-Jerez
(2007).

5The technical condition here will be referred to as the “limited volatility condition” which plays
a central role in Reichelstein and Rohlfing-Bastian (2015) in characterizing the relevant cost to be
imputed for capacity expansion decisions.

6In contrast to our framework here, the derivation of the user cost of capital has been derived in
models with overlapping investments in an infinite horizon setting, e.g., Arrow (1964), Carlton and
Perloff (2005), Rogerson (2008, 2011), Rajan and Reichelstein (2009) and Reichelstein and Sahoo
(2017).
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For stationary environments in which the expected value of capacity remains con-

stant over time, a standard two-part full cost transfer pricing rule will provide the

downstream division with appropriate capacity investment incentives. At the same

time, the periodic capacity cost charges do not interfere with the subsequent capacity

utilization decisions.

When the two products in question can share the installed capacity, it suggests

itself to allow the divisions to negotiate ex-post over the utilization of the available

capacity. In such fungible capacity settings, the cost-based transfer price defines the

parties’ status quo payoffs in the subsequent negotiations. If the capacity acquisition

decision were to be delegated to the upstream division in its role as an investment

center, the resulting outcome would generally entail under-investment. The upstream

division would then anticipate not earning the full expected return on its investment

because gains from the optimized total contribution margin would be shared in the

negotiation between the two divisions, when the initial acquisition cost would already

be sunk.7 Under certain conditions, we find that the coordination and hold-up prob-

lem associated with the initial capacity choice can be resolved by giving both divisions

the unilateral right to reserve capacity, charging the downstream division for its ca-

pacity reservation by means of full cost transfer prices, and allowing the divisions to

negotiate the actual use of the available capacity in subsequent time periods.

A coordination mechanism that works in a broader class of environments is ob-

tained in the fungible capacity scenario if the downstream division must obtain ap-

proval from the investment center manager for any capacity it wants to reserve for

its own use. The upstream division then becomes essentially a “gatekeeper” that

will agree to let the downstream division reserve capacity for itself in exchange for a

stream of lump-sum payments determined through initial negotiation. The upstream

7Even though investments are verifiable in our model, the hold-up problem that arises when only
the upstream division makes capacity investments is essentially the same as in earlier incomplete
contracting literature. One branch of that literature has explored how transfer pricing can alleviate
hold-up problems when investments are “soft” (unverifiable); see, for example, Baldenius et al.(1999),
Edlin and Reichelstein (1995), Sahay (2000), Baldenius (2008), and Pfeiffer et al. (2009).
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division will thereafter have an incentive to invest in additional capacity on its own

up to the efficient level. The resulting mechanism can be viewed as a hybrid between

cost-based and negotiated transfer pricing rules such that the downstream division is

charged the full cost of the total capacity acquired and total output produced.

Aside from the work of Dutta and Reichelstein (2010), this paper is closely related

to Reichelstein and Rohlfing-Bastian (2015). They examine the relevant cost measure

for capacity investments in a centralized setting, but do not consider any performance

evaluation and management control issues. Baldenius, Nezlobin and Vaysman (2016)

is another precursor to the present paper insofar as they study managerial perfor-

mance evaluation in a setting where capacity may remain idle in unfavorable states

of the world. Their analysis, however, confines attention to a single division firm, and

thus coordination and internal pricing issues do not arise in their model.

The remainder of the paper proceeds as follows. The basic model is described

in Section 2. Section 3 examines a setting in which the divisions’ products require

different production facilities and therefore capacity is dedicated. Propositions 1 -

4 delineate environments in which full cost transfer pricing can induce the divisions

to choose initial capacity levels and subsequent production levels that are efficient

from the overall firm perspective. Section 4 considers the alternative arrangement in

which capacity is fungible and can be traded across divisions. Propositions 5 and 6

demonstrate the need for allowing the downstream division to secure capacity rights

for itself initially, even if the entire available capacity can be reallocated through

negotiations in subsequent periods. We conclude in Section 5.

2 Model Description

Consider a vertically integrated firm comprised of two divisions and a central office.

Both divisions sell a marketable product (possibly a service) in separate and unrelated

markets. In order for either division to deliver its product in subsequent periods, the

firm needs to make upfront capacity investments. Because of technical expertise, only
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the upstream division (Division 1) is in a position to install and maintain the produc-

tive capacity for both divisions. Division 1 also carries out the production for both

divisions, and therefore incurs all periodic production costs.8 Our analysis considers

an organizational structure which views the upstream division as an investment cen-

ter whose balance sheet reflects the historical cost of the initial capacity investments.

In that sense, the upstream division acquires economic “ownership” of the capacity

related assets.

Capacity could be measured either in hours or the amount of output produced.

New capacity is acquired at time t = 0. Our analysis considers the two distinct

scenarios of dedicated and fungible capacity. In the former scenario, the two products

are sufficiently different so as to require separate production facilities. With fungible

capacity, in contrast, both products can utilize the same capacity infrastructure. The

upfront cash expenditure for one unit of capacity for Division i is vi in the dedicated

capacity setting. If Division i acquires ki units of capacity, it has the option to

produce up to ki units of output in each of the next T periods.9 In case of fungible

capacity, the cost of acquiring one unit of capacity is v, which allows either division

to produce one unit of output in each of the next T periods.

The actual production levels for Division i in period t are denoted by qit. We

assume that sales in each period are equal to the amount of production in that period;

i.e., the divisions do not carry any inventory. Aside from requisite capacity resources,

the delivery of one unit of output for Division i requires a unit variable cost of wit in

period t. These unit variable costs are anticipated upfront by the divisional managers

with certainty, though they may become known and verifiable to the firm’s accounting

system only when incurred in a particular period. The divisional contribution margins

8It is readily verified that our findings would be unchanged if the upstream division were to
transfer an intermediate product which is then completed and turned into a final product by the
downstream division.

9We thus assume that physical capacity does not diminish over time, but instead follows the
“one-hoss shay” pattern, commonly used in the capital accumulation and regulation literature. See,
for example, Rogerson (2008) and Nezlobin, Rajan and Reichelstein (2012).
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are given by

CMit(qit, εit) = xit ·Ri(qit, εit)− wit · qit.

The first term above, xit·Ri(qit, εit), denotes Division i’s revenues in period t with xit ≥
0 representing intertemporal parameters that allow for the possibility of declining, or

possibly growing, revenues over time.

In addition to varying with the production quantities qit, the periodic revenues

are also subject to one-dimensional transitory shocks εit. These random shocks are

realized at the beginning of period t before the divisions choose their output levels for

the current period, and prior to any capacity trades in the fungible capacity setting.

We assume that the random shocks εit are distributed according to density functions

fi(·) with support on the interval [εi, ε̄i]. The random variables {εit} are also assumed

to be independently distributed across time; i.e., Cov(εit, εiτ ) = 0 for each t 6= τ ,

though they may be correlated across the two divisions; i.e., it is possible to have

Cov(ε1t, ε2t) to be non-zero in any given period t.

The exact shape of the revenue revenue functions, Ri(qit, εit), is private information

of the divisional managers. These revenue functions are assumed to be increasing and

concave in qit for each i and each t. At the same time, the marginal revenue functions:

R
′

i(q, εit) ≡
∂Ri(q, εit)

∂q

are assumed to be increasing in εit.

In any given period, the actual production quantity for a division may differ

from its initial capacity rights for two reasons. First, for an unfavorable realization

of the revenue shock εit, a division may decide not to exhaust the entire available

capacity because otherwise marginal revenues would not cover the incremental cost

wit. Second, in the case of fungible capacity, a division may want to yield some of its

capacity rights to the other division if that division has a higher contribution margin.

Our model is in the tradition of the earlier goal congruence literature which does

not explicitly address issues of moral hazard and managerial compensation. Instead

the focus is on the choice of goal congruent performance measures for the divisions.
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Accordingly, we assume that each divisional manager is evaluated by a performance

measures πit in each of the T time periods. The downstream division, which has only

operational responsibilities for procuring and selling output, is treated as a profit

center whose performance measure is measured by its divisional profit. In contrast,

the upstream division, which also has control over capacity assets, is viewed as an

investment center with residual income as its performance measure.10 The remaining

design variables of the internal managerial accounting system then consist of divisional

capacity rights, depreciation schedules, and the transfer pricing rule.

Figure 1 illustrates the structure of the multi-divisional firm and its two con-

stituent responsibility centers.

Income Statement
External Revenue

- TP
Income

Upstream 
Division

Downstream 
Division

2tq

TP

Income Statement
External Revenue

- Operating Costs
- Depreciation
- Capital Charge
+     TP

Income

Balance Sheet

Capacity Assets

Multi-Divisional Firm

Figure 1: Divisional Structure of the Firm

10Earlier literature, including Reichelstein (1997), Dutta and Reichelstein (2002), and Baldenius
et al.(2007), has argued that among a particular class of accounting based metrics only residual
income can achieve the requisite goal congruence requirements.
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The downstream division’s performance measure (i.e., its operating income) in

period t is given by

π2t = Inc2t = x2t ·R2(q2t, ε2t)− TPt(k2, q2t),

where TPt(k2, q2t) denotes the transfer payment to the upstream division in period

t for securing k2 units of capacity and obtaining q2t units of output. The residual

income measure for the upstream division is given by

π1t = Inc1t − r ·BVt−1, (1)

where BVt denotes book value of capacity assets at the end of period t and r denotes

the firm’s cost of capital. The corresponding discount factor is denoted by γ ≡ (1 +

r)−1. The residual income measure in (1) depends on two accruals: the transfer price

received from the downstream division and the depreciation charges corresponding to

the initial capacity investments. Specifically,

Inc1t = x1t ·R1(q1t, ε1t)− w1t · q1t − w2t · q2t −Dt + TPt(k2, q2t),

where Dt is the total depreciation expense in period t. Let dit denote the depreciation

charge in period t per dollar of initial capacity investment undertaken for Division i.

Thus,

Dt = d1t · v1 · k1 + d2t · v2 · k2.

The depreciation schedules satisfy the usual tidiness requirement that
∑T

τ=1 diτ = 1;

i.e, the depreciation charges sum up to an asset’s historical acquisition cost over its

useful life. Book values evolve according to the simple iterative process: BVt =

BVt−1 −Dt, with BV0 = v1 · k1 + v2 · k2 and BVT = 0.

Under the residual income measure, the overall capital charge imposed on the

upstream division is the sum of depreciation charges plus imputed interest charges.

Given the depreciation schedules {dit}Tt=1, the overall capital charge becomes:

9



Dt + r ·BVt−1 = z1t · v1 · k1 + z2t · v2 · k2, (2)

where zit ≡ dit + r · (1 −
∑t−1

τ=1 diτ ). It is well known from the general properties of

the residual income metric that regardless of the depreciation schedule, the present

value of the zit is equal to one; that is,
∑T

t=1 zit · γt = 1 (Hotelling, 1925).

The manager of Division i is assumed to attach non-negative weights {uit}Ti=1 to

her performance measure in different time periods. The weights ui = (ui1, ..., uiT )

reflect both the manager’s discount factor as well as the bonus coefficients attached

to the periodic performance measures. Manager i’s objective function can thus be

written as
∑T

t=1 uit · E[πit]. A performance measure is said to be goal congruent if it

induces equilibrium decisions that maximize the net present value of firm-wide future

cash flows. Consistent with the earlier literature, we impose the criterion of strong goal

congruence, which requires that managers have incentives to make efficient production

and investment decisions for any combination of the coefficients uit ≥ 0. Strong goal

congruence requires that desirable managerial incentives must hold not only over the

entire planning horizon, but also on a period-by-period basis. That is, each manager

must have incentives to make efficient production and capacity decisions even if that

manager were solely focused on maximizing her performance measure πiτ in any given

single period τ .11

The criterion of strong goal congruence can be applied with one of several al-

ternative non-cooperative equilibrium concepts, e.g., dominant strategies or Nash

equilibrium. An additional property identified in some of our subsequent results is

the notion of a separable performance measure. A performance measure is said to

be separable if it remains unaffected by the decisions made by the other manager.

Clearly, separability can only be met if the divisions have dominant strategies.

11The concept of goal congruence dates back to the early work of Solomons (1964). Dutta (2008)
identifies settings in which the accrual accounting rules that emerge as goal congruent are also part
of optimal contracting arrangements in agency problems.
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3 Dedicated Capacity

We first investigate a setting in which the divisional products require different ca-

pacity infrastructures. Since the divisional managers have private information about

their future revenues, it is natural to consider an arrangement in which each division

has unilateral rights to procure capacity for its own use. The analysis in this sec-

tion focuses on identifying the depreciation schedules and transfer pricing rules that

provide incentives for the divisional managers to choose efficient levels of capacity

upfront and make optimal production decisions in subsequent periods. The following

time line illustrates the sequence of events at the initial investment date and in a

generic period t.

Figure 2: Sequence of Events in the Dedicated Capacity Scenario

If a central planner had full information regarding future revenues, the optimal

investment decisions (k1, k2) would be chosen so as to maximize the net present value

of the firm’s expected future cash flows

Γ(k1, k2) = Γ1(k1) + Γ2(k2), (3)

where

Γi(ki) =
T∑
t=1

Eεi [CMit(ki|xit, wit, ε̃it)] · γt − vi · ki, (4)

and CMit(·) denotes the maximized value of the expected future contribution margin

in period t:
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CMit(ki|xit, wit, εit) ≡ xit ·Ri(q
o
it(ki, ·), εit)− wit · qoit(ki, ·),

with

qoit(ki, ·) = argmax
qit≤ki

{xit ·Ri(qit, εit)− wit · qit}.

The notation qoit(ki, ·) above is short-hand for the sequentially optimal quantity

qoit(ki, xit, wit, εit) that maximizes the divisional contribution margin in period t, given

the initial capacity choice ki, current revenue and variable cost parameters (i.e., xit

and wit), and the realization of the current shock εit. To avoid laborious checking

of boundary cases, we assume throughout our analysis that the marginal revenue at

zero exceeds the unit variable cost of production for all εit; i.e.,

R′i(0, εit)− wi > 0

for all realizations of εit.

3.1 Stationary Environments

One significant simplification for the resource allocation problem we study obtains

if the firm anticipates that the economic fundamentals are, at least in expectation,

identical over the next T periods. Formally, an environment is said to be stationary if

xit = 1, wit = wi and the {εit} are i.i.d. for each i. For the setting of stationary envi-

ronments, we drop subscript t from CMit(·) and qoit(·). The result below characterizes

the efficient capacity levels, koi , for this setting.

Lemma 1 Suppose capacity is dedicated and the divisional environments are sta-

tionary. If the optimal capacity level koi is greater than zero, it is given by the unique

solution to the equation:

Eεi

[
R

′

i(q
o
i (k

o
i , wi, ε̃it), ε̃it)

]
= ci + wi, (5)
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where

ci =
vi∑T
t=1 γ

t
. (6)

Proof: All proofs are in the Appendix.

Earlier literature, including Rogerson (2008) and Rajan and Reichelstein (2009),

refers to ci as the user cost of capital or the unit cost of capacity. The user cost of

capital ci is obtained by “annuitizing” the unit cost of capacity vi (i.e., dividing vi

by
∑T

t=1 γ
t, which is the present value of $1 annuity over T periods). It is readily

verified that ci is the price that a hypothetical supplier would charge for renting out

capacity for one period of time if the rental business breaks even.

Lemma 1 says that the optimal capacity level koi is such that the expected marginal

revenue at the sequentially optimal production levels, qoi (k
o
i , ·) is equal to the sum of

the unit cost of capacity c and the variable cost wi. We shall subsequently refer to

this sum, ci + wi, as the full cost per unit of output. As observed in Reichelstein

and Rohlfing-Bastian (2015), ci +wi will generally exceed the traditional measure of

full cost in managerial accounting. The reason is that this measure does not include

the imputed interest charges for capital. For instance, if the depreciation charges are

uniform, the traditional measure of full cost in each period is given by vi
T

+wi, which

is less than vi∑T
t=1 γ

t
+ wi ≡ ci + wi.

In the context of our model, one common representation of full cost transfer pricing

is that the downstream division is charged in the following manner for intra-company

transfers:

1. Division 2 has the unilateral right to reserve capacity at the initial date.

2. Division 2 can choose the quantity, q2t, to be transferred in each period subject

to the initial capacity limit.

3. In period t, Division 2 is charged the full cost of output delivered, that is:

TPt(k2, q2t) = (w2 + c2) · q2t.

13



This variant of full cost transfer pricing is esssentially the one featured in the

Harvard case study “Polysar” (Simons, 2000). The downstream division is charged

for capacity only to the extent that it actually utilizes that capacity. A key takeaway

from the Polysar case study is that the buying division will tend to reserve too much

capacity upfront in the face of uncertain demand for its product. Such a strategy

preserves the division’s option to meet market demand if it turns out to be strong,

while it incurs no penalty for idling capacity if market conditions turn out to be

unfavorable.

In contrast to the conclusion emerging from the Polysar case study, Dutta and

Reichelstein (2010, Proposition 1) argue that with dedicated capacity full cost transfer

pricing will result in efficient capacity investments. In their setting, however, the issue

of capacity under-utilization does not arise because, by assumption, there are no

variable costs of production (i.e., wi = 0). Divisions may face uncertainty regarding

the value of capacity, though given any investment they will sequentially always prefer

to exhaust the capacity available.

An additional issue with the variant of cost-based transfer pricing described above

is that unless q2t = k2 in each period, the discounted value of the transfer pricing

charges is not equal to the total discounted cost of the capacity investment and

subsequent operating costs. While this is arguably not a crucial issue for an internal

accounting rule, we nonetheless introduce the following balancing constraint:

Definition A transfer pricing rule is said to be a full cost pricing rule if, in equilib-

rium:
T∑
t=1

TPt(k2, q2t) · γt = v2 · k2 +
T∑
t=1

w2t · q2t · γt

The qualifier “in equilibrium” in the preceding definition refers to the notion that

the transfer payments needs to be balanced only for the equilibrium investment and

operating decisions. The precise notion of equilibrium will vary with the particular

setting considered, specifically whether capacity is dedicated or fungible.
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One natural way to deter divisional managers from reserving “excessive” amounts

of capacity is the imposition of excess capacity charges.12 In addition to the full cost of

units delivered, the buying decision will then be charged in proportion to the amount

of capacity not utilized at some rate µ. A full cost transfer pricing rule subject to the

excess capacity charges will entail the following transfer payments:

TPt(k2, q2t) = (w2 + c2) · q2t + µ · (k2 − q2t). (7)

In any given period, the available capacity will generally be fully utilized in good

states of the world with high marginal revenues (high realizations of εit). On the other

hand, capacity may be left idle under unfavorable market conditions (low realizations

of εit). To state our first formal result, we introduce a notion of limited volatility in

the revenue shocks εit such that capacity will be fully utilized on the equilibrium path.

Following Reichelstein and Rohlfing-Bastian (2015), the limited volatility condition is

said to hold if qoi (k
o
i , ·) = koi for all realizations of εit where koi again denotes the

efficient capacity level. We note that the limited volatility condition will be met if

and only if the inequality:

R
′

i(k
o
i , εit)− wi ≥ 0

holds for all realizations of εit. Intuitively, the available capacity will always be

exhausted in environments with relatively low volatility in terms of the range and

impact of the ε̃it, or alternatively, if the unit variable cost, wi, is small relative to the

full cost, wi+ci. The limited volatility condition is thus a joint condition on the range

of ex-post uncertainty and the relative magnitude of the unit variable cost relative to

the full cost. If the separability condition Ri(qi, εit) = εit · R̂i(qi) with E(ε̃it) = 1 is

met, the limited volatility condition holds if and only if εit ≥ wi
wi+ci

.

12See, for instance, Kaplan (2006) and Martinez-Jerez (2007) on alternative rules for charging
products and divisions for unused capacity costs.
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Proposition 1 Suppose capacity is dedicated, the environment is stationary, and the

limited volatility condition holds. Full cost transfer pricing subject to excess capacity

charges, as given in (7), then achieves strong goal congruence provided µ ≥ c2 and

capacity assets are depreciated according to the annuity rule.

Excess capacity charges restore the efficiency of full cost transfers for two rea-

sons. First, double marginalization is not an issue as the downstream division will

internalize an incremental production cost of w2 + c2 − µ ≤ w2. We note that the

buying division will not have a short-run incentive to overproduce because the lim-

ited volatility condition ensures that the division would have exhausted the efficient

capacity level, koi for all realizations of εit if it had imputed an incremental cost of wi

per unit of output. The downstream division will therefore also exhaust the available

capacity for all εit when it imputes a marginal cost less than w2. Second, in making

its initial capacity choice, the buying division will only internalize the actual unit cost

of capacity, c2, because, given the limited volatility condition, it does not anticipate

excess capacity charges in equilibrium.13

Full cost transfer pricing subject to suitably chosen excess capacity charges pro-

vides the divisional managers with dominant strategy choices with regard to both

their initial capacity and subsequent production decisions. The annuity deprecia-

tion schedule ensures that the financial consequences of the downstream division’s

choices merely “pass-through” the upstream division’s performance measure because,

in equilibrium, the transfer payment from Division 2 is precisely equal to the sum

of depreciation, imputed capital charges, and variable production costs incurred by

Division 1. Therefore, the performance evaluation system satisfies our criterion of

separability.

We stress that for the above goal congruence result, it is essential that the excess

capacity charge, µ, be at least as large as the unit cost of capacity c2. Otherwise,

13We note parenthetically that there would have been no need for excess excess capacity charges if
either there is no periodic volatility in divisional revenues (the εit are always equal to their average
values) or there are no incremental costs to producing output (wi = 0).
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the issues observed in connection with the transfer pricing policy in the Polysar case

(where µ = 0) would resurface. Specifically, there would be a double marginalization

problem in each period, since the downstream division would impute a marginal cost

higher than w2. In addition, this division would have incentives to procure excessive

capacity because it is charged for the capacity only when actually utilized.

If the limited volatility condition for the buying division is not met, it will be

essential to precisely calibrate the excess capacity charges. The obvious choice here

is µ = c2, which results in the following two-part full cost transfer pricing rule:

TPt(k2, q2t) = c2 · k2 + w2 · q2t (8)

This pricing rule satisfies our criterion of a full cost transfer pricing rule insofar as

the sum of the discounted transfer payments is identically equal to the initial capac-

ity acquisition cost plus the discounted sum of the subsequent variable production

costs. The transfer pricing rule in (8) also ensures that the performance measures are

separable.

Proposition 2 With dedicated capacity and a stationary environment, the two-part

full cost transfer pricing rule in (8) achieves strong congruence, provided capacity

assets are depreciated according to the annuity rule.

The two-part full cost transfer pricing rule charges the downstream division sepa-

rately for (i) the amount of capacity that it reserves initially, and (ii) the variable cost

of output that it procures actually in each period. This form of full cost transfer pric-

ing rule eliminates the downstream division’s incentives to reserve too much capacity

upfront as well as the double marginalization problem associated with the naive full

cost transfer pricing rule. In fact, it can be verified that absent any restrictions on the

amount of volatility, the two-part transfer pricing mechanism in (8) is unique among

the class of linear transfer pricing rules of the form TPt(k2, q2t) = a1 · k2 + a2 · q2t;

i.e., a1 = c2 and a2 = w2 are not only sufficient but also necessary for strong goal

congruence.
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3.2 Non-Stationary Environments

We have thus far restricted our analysis to stationary environments in which each

division’s costs and expected revenues are identical across periods. In this subsec-

tion, we investigate depreciation and transfer pricing rules that can achieve strong

goal congruence for certain non-stationary environments. The following result char-

acterizes the efficient capacity choices by generalizing Lemma 1 for non-stationary

environments:

Lemma 2 If capacity is dedicated and the optimal capacity level, koi , in (5) is greater

than zero, it is given by the unique solution to the equation:

T∑
t=1

Eεit

[
xit ·R

′

i(q
o
it(k

o
i , ε̃it, xit, wit), ε̃it)

]
· γt = vi + w̄i (9)

where

w̄i =
T∑
t=1

wit · γt.

It is readily seen that the claim in Lemma 2 reduces to that in Lemma 1 whenever

xit = 1, wit = wi and {εit} are i.i.d. Beginning with the work of Rogerson (1997),

earlier work on goal congruent performance measures has shown that if the revenues

attained vary across time periods, proper intertemporal cost allocation of the initial

investment expenditure requires that depreciation be calculated according to the rel-

ative benefit rule rather than the simple annuity rule. This insight extends to the

setting of our model provided the variable costs of production change in a coordi-

nated fashion over time. Formally, the relative benefit depreciation charges are the

ones defined by the requirement that the overall capital charge in period t (i.e., the

sum of depreciation and imputed interest charges), as introduced in equation (2), be

given by:14

14As pointed out by earlier studies, the corresponding relative benefit depreciation charges will
coincide with straight-line depreciation if the xit decline linearly over time at a particular rate
(Nezlobin et al. 2012).
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ẑit ≡
xit∑T

τ=1 xiτ · γτ

Corollary to Proposition 2: If capacity is dedicated and wit = xit · wi, a two-part

full cost transfer pricing rule of the form

TPt(k2, q2t) = ẑ2t · v2 · k2 + w2t · q2t

achieves strong congruence, provided capacity assets are depreciated according to the

relative benefit depreciation rule.

The preceding result generalizes the result in Proposition 2 to a class of non-

stationary environments in which expected revenues and variable costs are different

across periods. However, the settings to which the above result applies is rather

restrictive. Specifically, the result requires that intertemporal variations in periodic

revenues and variable production costs follow identical patterns (i.e., wit = xit · wi).
With limited volatility, the result below shows that the finding of Proposition 2

can be extended to a class of non-stationary environments.

Proposition 3 Suppose capacity is dedicated, the limited volatility condition holds,

and the {εit} are i.i.d. The full cost transfer pricing rule

TPt(k2) = ẑ2t · (v2 + w̄2) · k2

achieves strong goal congruence, provided the anticipated variable production costs of

each division, w̄i · ki, are capitalized and the divisional capitalized costs, (vi + w̄i) · ki
are depreciated according to the respective relative benefit rule.

The above transfer pricing rule does not charge the downstream division for actual

variable costs incurred in connection with the actual production volume. Instead, the

buying division is charged for the “budgeted” variable costs that will be incurred in

future time periods assuming that the initially chosen capacity chosen will be fully

19



exhausted in all future periods. Such a policy is indeed efficient if (i) the limited

volatility condition holds, and (ii) the downstream division has an incentive to choose

the efficient capacity level in the first place. Given the above transfer pricing rule,

the downstream division will choose k2 to maximize:

T∑
t=1

Eε2 [x2t ·R2(k2, ε̃2t)] · γt − (v2 + w̄2) · k2.

Thus, the downstream division’s objective function coincides with that of the firm for

any k2 ≤ ko2.

We note that TPt(k2) = ẑ2t ·(v2 +w̄2) ·k2 is a full-cost transfer pricing rule because

in equilibrium, Division 2 initially procures ko2 and subsequently exhausts the available

capacity. However, this transfer pricing rule no longer achieves separability because

the upstream division’s variable costs of production are balanced by the transfer

payments received from the buying division only over the entire T period horizon,

but not on a period-by-period basis.

To extend the preceding result to environments where the limited volatility con-

dition may not be satisfied, we adopt the binary investment level model in Baldenius,

Nezlobin and Vaysman (2016, Proposition 1). Specifically, suppose that each division

chooses whether to install a specific amount of capacity k̄i or not; i.e., ki ∈ {0, k̄i}.
Suppose further that each division’s revenue function Ri(·, ε̃it) is publicly known, but

each divisional manager’s private information is a one-dimensional parameter θi which

affects the probability distributions of ε̃it. We assume that θi shifts the conditional

densities fi(εit|θi) in the sense of first-order stochastic dominance.

The essential simplification with binary investment choices is that the accrual

accounting rules, i.e., depreciation schedule and transfer pricing rule, only need to

separate the types of θi for whom capacity investment is in the firm’s interest from

those types for whom it is not. Accordingly, we denote the threshold type where the
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firm is just indifferent between investing and not investing by θ∗i . Thus,

Γi(k̄i|θ∗i ) =
T∑
t=1

Eεi
[
CMit(k̄i|xit, wit, ε̃it)|θ∗i )

]
· γt − vi · k̄i = 0. (10)

As before, CMit(·) denotes the maximized value of the expected future contribution

margin in period t:

CMit(k̄i|xit, wit, εit) ≡ xit ·Ri(q
o
it(k̄i, ·), εit)− wit · qoit(k̄i, ·).

Following the terminology in Baldenius, Nezlobin and Vaysman (2016), we refer

to the Relative Expected Optimized Benefit (REOB) cost allocation rule as:

z̄it =
Eεi
[
CMit(k̄i|xit, wit, ε̃it)|θ∗i

]∑T
τ=1Eεi

[
CMiτ (k̄i|xiτ , wiτ , ε̃iτ )|θ∗i

]
· γτ

.

The REOB rule is effectively the relative benefit rule for the threshold type θ∗i ,

and reduces to annuity depreciation in a stationary environment.

Proposition 4 Suppose the set of feasible capacity investment choices is binary and

the future realizations of ε̃it are drawn according to conditional densities f(εit|θi) such

that θi shifts f(εit|θi) in the sense of first-order stochastic dominance. The full-cost

transfer pricing rule

TPt(k2, q2t) = z̄2t · v2 · k2 + w2t · q2t

then achieves strong goal congruence, provided capacity assets are depreciated accord-

ing to the REOB rule.

Like the two-part tariff in Proposition 2, the transfer pricing rule identified in

the above finding is a full-cost transfer pricing rule which satisfies the criterion of

separability. To check goal congruence, it can be shown that both the expected

value of the maximized contribution margin, Eεi
[
CMiτ (k̄i|xiτ , wiτ , ε̃iτ )|θi

]
, and the

net present value of the capacity investment, Γi(k̄i|θi), are increasing in θi. Consider
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now the downstream division’s incentive to invest. If that division were to focus

exclusively on its profit measure in period t, 1 ≤ t ≤ T , it would seek to maximize:

Eε2 [π2(k|θ2, ε̃2t)] ≡ Eε2 [CM2t(k2|x2t, w2t, ε̃2t, θ2)]− z̄2t · v2 · k2.

By construction of the REOB rule, Eε2 [π2(k|θ2, ε̃2t)] > 0 if and only if

Eε2
[
CM2t(k̄2|x2t, w2t, ε̃2t)|θ2

]
> Eε2

[
CM2t(k̄2|x2t, w2t, ε̃2t)|θ∗2

]
,

which will be the case if and only if θ2 > θ∗2.

In concluding this section, we recall that Propositions 1-4 have identified envi-

ronments where some variant of full cost transfer pricing is part of a goal congruent

performance measurement system. Common to these pricing rules is that capacity

related costs are charged in a lump-sum fashion against revenues so as to ensure that

the charges have no effect on subsequent production decisions. Yet, the specific rules

for allocating fixed costs and charging for anticipated variable costs vary with the par-

ticular setting, i.e., demand volatility, stationarity, and the investment opportunity

set.

4 Fungible Capacity

In contrast to the scenario considered thus far, where the products or services provided

by the two divisions required different production assets, we now consider the plausible

alternative of fungible capacity. Accordingly, the production processes of the two

divisions have enough commonalities and the demand shocks εt are realized sufficiently

early in each period, so that the initial capacity choices can be reallocated across the

two divisions. The following time line illustrates the sequence of events at the initial

investment date and in a generic period t.
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Figure 3: Sequence of Events in the Fungible Capacity Scenario

The analysis below focuses at first on stationary environments. With fungible ca-

pacity, the optimal investment from a firm-wide perspective is the one that maximizes

total expected future cash flows:

Γ(k) =
T∑
t=1

Eεt [CM(k|w, ε̃t)] · γt − v · k, (11)

where w ≡ (w1, w2), and εt ≡ (ε1t, ε2t) and CM(·) denotes the maximized value of

the aggregate contribution margin in period t. That is,

CM(k|w, ε̃t) ≡
2∑
i=1

[Ri(q
∗
i (k, ·), εit)− w · q∗i (k, ·)],

where

(q∗1(k, ·), q∗2(k, ·)) = argmax
q1+q2≤k

{
2∑
i=1

[Ri(qi, εit))− wi · qi]}.

As before, the notation q∗i (k, ·) is short-hand for q∗i (k, w, εt).

Provided the optimal quantities q∗i (k, ·) are both positive, the first-order condition:

R
′

1(q∗1(k, ·), ε1t)− w1 = R
′

2(q∗2(k, ·), ε2t)− w2 (12)

must hold. Allowing for corner solutions, we define the shadow price of capacity in

period t, given the available capacity k, as follows:

S(k|w, εt) ≡ max{R′

1(q∗1(k, ·), ε1t)− w1, R
′

2(q∗2(k, ·), ε2t)− w2}. (13)
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The shadow price of capacity identifies the maximal change in periodic contribution

margin that the firm can obtain from an extra unit of capacity.15 We note that S(·)
is increasing in εit, but decreasing in wi and k.

Lemma 3 Suppose capacity is fungible and the divisional environments are station-

ary. The optimal capacity level, k∗, is given by the unique solution to the equation:

Eε [S(k∗|w, ε̃t)] = c, (14)

where

c =
v∑T
t=1 γ

t
. (15)

We next examine the divisions’ capacity investment choices in the decentralized

setting. Given a stationary environment, Proposition 2 suggests that the two-part

full cost transfer pricing rule in (8) can induce goal congruence if the divisions are

allowed to renegotiate the initial capacity rights after realization of revenue shocks εt

in each period. In this negotiation, the full cost pricing rule determines the parties’

status quo payoffs.

Suppose that the downstream division has procured initial rights for k2 units of

capacity, the upstream division has installed k1 units of capacity for its own use, and

hence k = k1 + k2 is the corresponding amount of firm-wide capacity. As shown in

Dutta and Reichelstein (2010), if the two divisions have symmetric information about

each other’s revenues and costs, they can increase the firm-wide contribution margin

by reallocating the available capacity k1 + k2 at the beginning of each period after

the relevant shock εt is realized. The resulting “trading surplus” of

TSP ≡ CM(k|w, εt)−
2∑
i=1

CMi(ki|wi, εit) (16)

15The assumption that R
′

i(0, εit) ≥ wi for all εit ensures that the shadow price of capacity is always
non-negative.
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can then be shared by the two divisions. Let δ ∈ [0, 1] denote the fraction of the

total surplus that accrues to Division 1. Thus, the parameter δ measures the relative

bargaining power of Division 1, with the case of δ = 1
2

corresponding to the familiar

Nash bargaining outcome. The negotiated adjustment in the transfer payment, ∆TPt,

that implements the above sharing rule is given by

R1(q∗1(k, ·), ε1t)− w1 · q∗1(k, ·) + ∆TPt = CM1(k1|w1, ε1t) + δ · TSP,

where we recall that q∗1(k, ·) and q∗2(k, ·) are the divisional production choices that

maximize the aggregate contribution margin. At the same time, Division 2 obtains:

R2(q∗2(k, ·), ε2t)− w2 · q∗2(k, ·)−∆TPt = CM2(k2|w, ε2t) + (1− δ) · TSP.

These payoffs ignore the transfer payment c · k2 that Division 2 makes at the

beginning of the period, since this payment is viewed as sunk at the renegotiation

stage. The total transfer payment made by Division 2 in return for the ex-post

efficient quantity q∗2(k, ·) is then given c · k2 + w2 · q∗2(k, ·) + ∆TPt.

After substituting for TSP from (16), the effective contribution margin to Division

i can be expressed as follows:

CM∗
1 (k1, k2|εt) = (1− δ) · CM1(k1|w1, ε1t) + δ · [CM(k|w, εt)− CM2(k2|w2, ε2t)]

and

CM∗
2 (k1, k2|εt) = δ · CM2(k2|w2, ε2t) + (1− δ) · [CM(k|w, εt)− CM1(k1|w1, ε1t)] .

We note that the expected value of the effective contribution margin, Eε [CM∗
i (ki, kj|εt)],

is identical across periods for stationary environments. Combined with the annuity

depreciation rule for capacity assets, this implies that division i will choose ki to

maximize:

Eε [CM∗
i (ki, kj|ε̃t)]− c · ki (17)
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taking division j’s capacity request kj as given.

It is useful to observe that in the extreme case where Division 1 has all the

bargaining power (δ = 1), Division 1 would fully internalize the firm’s objective and

choose the efficient capacity level k∗. Similarly, in the other corner case of δ = 0,

Division 2 would internalize the firm’s objective and choose k2 such that Division 1

responds with the efficient capacity level k∗.

If (k1, k2) constitutes a Nash equilibrium of the divisional capacity choice game

with ki > 0 for each i, then, by the Envelope Theorem, the following first-order

conditions are met:

Eε

[
(1− δ) · CM ′

1(k1|w1, ε̃1t) + δ · S(k1 + k2|w, ε̃t)
]

= c (18)

and

Eε

[
δ · CM ′

2 (k2|w2, ε̃2t) + (1− δ) · S(k1 + k2|w, ε̃t)
]

= c, (19)

where CM ′
i(ki|wi, εit) ≡ R′i(q

o
i (ki, ·), εit) − wi is the marginal contribution margin

in the dedicated capacity scenario. It can be verified from the proofs of Lemma 1

and Lemma 3 that CM
′
i (·) and S(·) are decreasing functions of ki, and hence each

division’s objective function is globally concave.

Similar to the arguments in Dutta and Reichelstein (2010), the above first-order

conditions show that each division’s incentives to acquire capacity stem both from the

unilateral “stand-alone” use of capacity as well as the prospect of trading capacity

with the other division. The second term on the left-hand side of both (18) and (19)

represents the firm’s aggregate and optimized marginal contribution margin, given by

the (expected) shadow price of capacity. Since the divisions individually only receive

a share of the aggregate return (given by δ and 1 − δ, respectively), this part of

the investment return entails a “classical” holdup problem.16 Yet, the divisions also

16Earlier papers on transfer pricing that have examined this hold-up effect include Edlin and
Reichelstein (1995), Baldenius et al. (1999), Anctil and Dutta (1999), Wielenberg (2000), and
Pfeiffer et al. (2009).
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derive direct value from the capacity available to them, even if the overall capacity

were not to be reallocated ex-post. The corresponding marginal revenues are given

by the first terms on the left-hand side of equations (18) and (19), respectively.17

Equations (18) and (19) also highlight the importance of allowing both divisions to

secure capacity rights. The firm would generally face an underinvestment problem if

only one division were allowed to secure capacity. For instance, if only the upstream

division were to acquire capacity, its marginal contribution margin at the efficient

capacity level k∗ would be:

Eε

[
(1− δ) · CM ′

1(k∗|w1, ε̃1t) + δ · S(k∗|w, ε̃t)
]
.

This marginal revenue is, however, less than Eε [S(k∗|w, ε̃t)] = c because

Eε [CM ′
1(k∗|w1, ε̃1t)] = Eε

[
R

′

1(qo(k∗, ·), ε̃1t)− w1

]
≤ Eε

[
R

′

1(q∗1(k∗, ·), ε̃1t)− w1

]
≤ Eε [S(k∗|w, ε̃t)] ,

where the first inequality above is a consequence of the fact that qo1(k∗, ·) ≥ q∗1(k∗, ·).
Thus the upstream division would have insufficient incentives to secure the firm-wide

optimal capacity level on its own, since it would anticipate a classic hold-up on its

investment in the subsequent negotiations.

The following result identifies a class of environments for which the two-part full

cost transfer pricing rule achieves strong goal congruence provided the divisions are

allowed to periodically renegotiate the initial capacity rights and capacity assets are

depreciated according to the annuity depreciation rule. To that end, it will be useful

to make the following assumption regarding the divisional revenue functions:

17A similar convex combination of investment returns arises in the analysis of Edlin and Reichel-
stein (1995), where the parties sign a fixed quantity contract to trade some good at a later date.
While the initial contract will almost always be renegotiated, its significance is to provide the di-
visions with a return on their relationship-specific investments, even if the status quo were to be
implemented.
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Ri(q, θi, εit) = εit · θi · q − hit · q2. (20)

We assume that while the quadratic functional form in (20) is commonly known,

the firm’s central office does not have sufficient information about the divisional rev-

enue functions because the parameters (θ1, θ2) are known only to the two divisional

managers.

Proposition 5 Suppose the divisional revenue functions take the quadratic form in

(20) and the limited volatility condition is satisfied in the dedicated capacity setting.

A system of decentralized initial capacity choices combined with the full cost transfer

pricing rule

TPt(k2, q2t) = c · k2 + w2 · q2t

achieves strong goal congruence, provided the divisions are free to renegotiate the

initial capacity rights and capacity assets are depreciated according to the annuity

rule.

The proof of Proposition 5 shows that the quadratic form of divisional revenues in

(20) has the property that the resulting shadow price function S(k|θ, w, εt) is linear

in εt. Combined with the limited volatility condition, linearity of the shadow price

S(·) in εt implies that the efficient capacity in the fungible capacity scenario is the

same as in the dedicated capacity setting; i.e., k∗ = ko1 + ko2. Furthermore, when

the limited volatility condition holds, the stand-alone capacity levels (ko1, k
o
2) are the

unique solution to the divisional first-order conditions in (18) and (19).

Proposition 5 can be extended to non-stationary environments in which the rev-

enue factors xit and variable costs wit differ across periods. Generalizing the result in

Lemma 3, it can be shown that the optimal capacity k∗ is given by:

Eε

[
T∑
t=1

γt · St(k∗|xt, wt, ε̃t)

]
= v
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where

St(k|xt, wt, εt) ≡ max{x1t ·R′1(q∗1t(k, ·), ε1t)− w1t, x2t ·R′2(q∗2t(k, ·), ε2t)− w2t}

is the shadow price of capacity in period t. With quadratic revenue functions and the

limited volatility condition in place, it can again be verified that the efficient capacity

in the fungible setting is the same as in the dedicated setting; i.e., k∗ = ko1 + ko2.

Adapting the transfer pricing rule in Proposition 3, suppose that the anticipated

variable costs of production are capitalized and the divisional assets are depreciated

according to the relative benefit rule. The same arguments as those in the proofs of

Propositions 3 and 5 then show that the corresponding full cost transfer pricing rule:

TPt(k2) = ẑ2t · (v + w̄2) · k2,

with ẑ2t and w̄2 as defined in Section 3.2, will induce strong goal congruence provided

the divisions are allowed to renegotiate the initial capacity rights.

The rules for choosing capacity choice and pricing transfers in Proposition 5 rely on

both the limited volatility condition and the restriction that the divisional revenue

functions can effectively be approximated by quadratic functions. Intuitively, the

importance of the quadratic revenue functions is that the expected marginal revenue

is equal to the marginal revenue at the expected value of εit. With this structure,

the divisional coordination problem in choosing the overall level of capacity can be

solved by letting the divisions make these choices simultaneously and independently.

For more general environments, we investigate whether the coordination prob-

lem regarding capacity investments can be resolved by a sequential mechanism that

gives the upstream additional supervisory authority. In effect, the upstream division

can now be viewed as a “gatekeeper” whose approval is required for any capacity

the downstream division wants to reserve for itself. Specifically, in order to acquire

unilateral capacity rights, the downstream division needs to receive approval from

the upstream division.18. If the two divisions reach such an upfront agreement, it

18We focus on the upstream division as a gatekeeper because this division was assumed to have
unique technological expertise in installing and maintaining production capacity. Yet, the following
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specifies the downstream division’s unilateral capacity rights k2 and a corresponding

transfer payment p(k2) that must be made to the upstream division for granting these

rights in each subsequent period. The parties report the outcome of this agreement

(k2, p(k2)) to the central office, which commits to enforce this outcome unless the

parties renegotiate it.

The upstream division is free to install additional capacity for its own needs in

addition to what has been secured by the downstream division. As before, capacity

assets are depreciated according to the annuity depreciation rule, and thus the up-

stream division is charged c for each unit of capacity that it acquires. If the parties

fail to reach a mutually acceptable agreement, the downstream division would have no

ex-ante claim on capacity, though it may, of course, obtain capacity ex-post through

negotiation with the other division. We summarize this negotiated gatekeeper transfer

pricing arrangement as follows:

• The two divisions negotiate an ex-ante contract (k2, p(k2)) which gives Division

2 unilateral rights to k2 units of capacity in return for a fixed payment of p(k2)

in each period.

• Subsequently, Division 1 installs k ≥ k2 units of capacity,

• If Division 2 procures q2t units of output in period t, the corresponding transfer

payments is calculated as TPt(k2, q2t) = p(k2) + w2 · q2t.

• After observing the realization of revenue shocks εt in each period, the divisions

can renegotiate the initial capacity rights.

For the result below, we assume that the optimal dedicated capacity level koi is

non-zero for each i. It can be readily verified from the proof of Lemma 1 that a

necessary and sufficient condition for koi to be positive is

Eεi [R′i(0, εit)] > ci + wi. (21)

analysis makes clear that the role of the two divisions could be switched.
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Proposition 6 Suppose the divisional environments are stationary and the down-

stream division’s unilateral capacity rights are determined through negotiation. The

transfer pricing rule

TPt(k2, q2t) = p(k2) + w2 · q2t

achieves strong goal congruence, provided the divisions are free to renegotiate the

initial capacity rights in each period and capacity assets are depreciated according to

the annuity depreciation rule.

A gatekeeper arrangement will attain strong goal congruence if it induces the

two divisions to acquire collectively the efficient capacity level, k∗. The proof of

Proposition 6 demonstrates that in order to maximize their joint expected surplus,

the divisions will agree on a particular amount of capacity level k∗2 ∈ [0, k∗) that

the downstream can claim for itself in any subsequent renegotiation. Thereafter, the

upstream division has an incentive to acquire the optimal amount of capacity k∗,

giving this division then an exclusive claim on k∗ − k∗2 units of capacity.

To provide further intuition, suppose the two divisions have negotiated an ex-ante

contract that gives the downstream division rights to k2 units of capacity in each

period. In response to this choice of k2, the upstream division chooses r1(k2) units of

capacity for its own use, and thus installs r1(k2)+k2 units of aggregate capacity. The

upstream division’s reaction function, r1(k2), will satisfy the first-order condition in

(18); i.e.,

Eε

[
(1− δ) · CM ′

1(r1(k2)|w1, ε̃1t) + δ · S(r1(k2) + k2|w, ε̃t)
]

= c.

As illustrated in Figure 4 below, the reaction function r1(k2) is downward-slopping

because both CM ′
1(k1|·) and S(k|·) are decreasing functions.
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Figure 4: Division 1’s Reaction Function

Furthermore, the proof of Proposition 6 shows that r1(0) ≤ k∗ and r1(k∗) > 0.

Therefore, as shown in Figure 4, there exists a k∗2 ∈ [0, k∗) such that the upstream

division responds with r1(k∗2) = k∗ − k∗2, and hence installs the optimal amount of

aggregate capacity k∗1 on its own.

The ex-ante agreement (k∗2, p(k
∗
2)) must be such that it is preferred by both di-

visions to the default point of no agreement. If the two divisions fail to reach an

ex-ante agreement, the upstream division will choose its capacity level unilaterally,

and the downstream division will receive no initial capacity rights. By agreeing to

transfer k∗2 units of capacity rights to the downstream division, the two divisions can

generate additional surplus. The fixed transfer payment p(k∗2) is chosen such that this

additional surplus is split between the two divisions in proportion to their relative

bargaining powers.
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We note that in comparison to the preceding setting where the two divisions have

symmetric capacity rights (Proposition 5), the downstream division is worse-off under

the gatekeeper arrangement. The upstream division will extract some of the expected

surplus contributed by the other division. At the same time, the specification of the

default outcome, in case the parties were not to reach an agreement at the initial

stage, is of no particular importance for the efficiency result in Proposition 6. The

same outcome, albeit with a different transfer payment, would result if the mechanism

were to specify that in the absence of an agreement the downstream division could

claim some share of the capacity subsequently procured by the upstream division at

the transfer price:

TP (q2t) = (c+ w2) · q2t.

The allocation mechanism in Proposition 6 can be interpreted as a hybrid between

full cost and negotiated transfer pricing such that the upstream division is charged

for the full cost of the entire capacity and output produced by the divisions. Those

charges are split between the two divisions through a two-stage negotiation. The

latter feature is also the key to the efficiency of the fixed quantity contracts in Edlin

and Reichelstein (1995). In their model, a properly set default quantity of a good to

be traded provides the parties with incentives to make efficient relationship-specific

(unverifiable) investments. In the context of our model, an agreement on the uni-

lateral capacity rights of the downstream division induces the investment center to

acquire residual capacity rights for itself such that the overall capacity procured is

efficient from a firm-wide perspective.

5 Conclusion

This paper has re-examined the incentive properties of full cost transfer pricing rule in

multi-divisional firms. Our analysis is motivated by the fact that this form of internal

pricing remains ubiquitous in practice despite the many concerns that have been
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expressed about it in textbooks and the academic literature. The main ingredients in

our model are that divisional managers are responsible for the initial acquisition of

capacity as well as its subsequent utilization in future periods. An upstream division

installs capacity and provides production services for both divisions, since it has the

necessary technical expertise. In each period, the upstream division receives a transfer

payment for providing capacity- and production services to the downstream division.

We identify circumstances in which a suitable variant of full cost transfer pricing

induces efficient capacity acquisition and subsequent production decisions. From an

ex-ante capacity planning perspective, variable cost pricing is clearly inadequate be-

cause the buying division will not internalize the relevant capacity costs, and hence

this pricing rule generates incentives for the buying division to initially request an

excessive amount of capacity. At the same time, a simplistic form of full cost transfer

pricing that charges the buying division only for the cost of actually utilized capac-

ity will also not achieve efficient outcomes as this rule again motivates the buying

division to request an inefficiently large amount of capacity. Our results demonstrate

that, depending on the characteristics of the underlying production and market envi-

ronment, particular variants of two-part full cost transfer pricing can indeed lead to

efficient decentralization.

When the divisions can share the same productive assets for their production

needs, an efficient allocation of the available capacity can be achieved ex-post through

bilateral negotiation. We find that potential hold-up problems on investments result-

ing from ex-post negotiation can be alleviated through an appropriate assignment of

initial capacity rights in conjunction with full cost transfer prices that determine the

divisions’ default payoffs at the negotiation stage.
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Appendix

Proof of Lemma 1:

With dedicated capacity, the firm’s objective function is additively separable

across the two divisions. For a stationary environment, the firm seeks a capacity

level koi that maximize total expected cash flows

Γi(ki) =
T∑
t=1

Eεi [Ri(q
o
i (ki, ·), ε̃it]− wi · qoi (·)]γt − vi · ki, (22)

where qoi (ki, ·) ≡ qoi (ki, wi, εit) is given by

qoi (·) = argmax
qi≤ki

{Ri(qi, εit)− wi · qi}.

Dividing the objective function in (22) by the annuity factor
∑T

t=1 γ
t, the firm

seeks a capacity level, koi for Division i that maximizes:

Eεi [CMi(ki|wi, ε̃it)]− c · ki,

where

CMi(ki|wi, εit) ≡ Ri(q
o
i (ki, ·), εit)− wi · qoi (ki, ·)

is the maximized value of contribution margin in period t.

Claim: CMi(ki|wi, εit) is differentiable in ki for all εit and

∂

∂k
CMi(ki|wi, εit) = R′i(q

o
i (ki, ·), εit)− wi.

Proof of Claim: We first note that

CMi(ki + ∆|wi, εit)− CMi(ki|wi, εit)
∆

≥ Ri(q
o
i (ki, ·) + ∆, εi)−Ri(q

o
i (ki, ·), εit)

∆
− wi. (23)
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This inequality follows directly by observing that

CMi(ki + ∆|wi, εit) ≥ Ri(q
o
i (ki, ·) + ∆, εit)− wi · [qoi (ki, ·) + ∆].

At the same time, we find that

CMi(ki + ∆|wi, εit)− CMi(ki|wiεit)
∆

≤ Ri(q
o
i (ki + ∆, ·), εit)−Ri(q

o
i (ki + ∆, ·)−∆, εit)

∆
− wi. (24)

To see this, we note that

CMi(ki + ∆|wi, εit)− CMi(ki|wi, εit)

≤ Ri(q
o
i (ki + ∆, wi, εit), εit)− wi · qoi (ki + ∆, wi, εit)

− [Ri(q
o
i (ki + ∆, wi, εit)−∆, εit)− wi · (qoi (ki + ∆, w, ε)−∆)].

because qoi (ki+∆, wi, εit)−∆ ≤ ki if the division invested ki+∆ units of capacity. We

also note that for ∆ sufficiently small, qoi (ki+∆, wi, εit)−∆ ≥ 0 because qoi (ki, wi, εit) >

0 by the assumption that R′i(0, εit)− wi > 0.

By the Intermediate Value Theorem, the right-hand side of (24) is equal to

R′i(q̂i(∆), wi, εi) ·∆
∆

− wi,

for some intermediate value q̂i(∆) such that qoi (ki + ∆, ·)−∆ ≤ q̂i(∆) ≤ qoi (ki + ∆, ·).
As ∆→ 0, the right-hand side in both (26) and (24) converge to the following:

R′i(q
o
i (k, wi, εit), εit)− wi,

proving the claim.
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If koi > 0 is the optimal capacity level, then

∂

∂k
[Eε[CMi(k

o
i |wi, ε̃i)]− ci · koi ] = Eεi

[
∂

∂ki
CMi(k

o
i |wi, ε̃i)

]
− ci

= Eεi [R
′
i(q

o
i (ki, ·), ε̃i)]− (ci + wi)

= 0.

Thus koi satisfies equation (5) in the statement of Lemma 1.

To verify uniqueness, suppose that both koi and koi + ∆ satisfy equation (5). Since

by definition qoi (k
o
i + ∆, ·) ≥ qoi (k

o, ·) for all εit, it would follow that in fact

qoi (k
o
i + ∆, ·) = qoi (k

o
i , ·)

for all εit. That in turn would imply that the optimal production quantity in the

absence of a capacity constraint, i.e., q̂i(εit, ·), is less than koi , and therefore

Eεi [R
′
i(q̂i(ε̃it, ·), ε̃it)] = Eεi [R

′
i(q

o
i (k

o
i , ε̃it, wi), ε̃it)] = wi,

which would contradict that koi satisfies equation (5) in the first place. 2

Proof of Proposition 1:

Contingent on (k1, k2) and (q1t, q2t) ≤ (k1, k2), Division 1’s residual income per-

formance measure in period t is given by

π1t = R1(q1t, ε1t)− w1 · q1t − w2 · q2t + TP (q2t, k2)− z1t · v1 · k1 − z2t · v2 · k2.

Regardless of the decisions made by Division 2, Division 1 will therefore choose

the production quantity qo1(k1, ·) that maximizes its contribution margin in period t.

It is well known that if capacity assets are depreciated according to the annuity rate,

then

z1t · v1 =
1∑
t γ

t
· v1 = c1.

In order to maximize Eε1 [π̃1t] in any particular time period t, the initial capacity level

k1 should be chosen so as to maximize the following objective function:
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Eε1 [R1(qo1(k1, ·), ε̃1t)− w1 · qo1(k1, ·)]− c1 · k1.

This objective function is proportional to the objective function of the central office,

Γ1(k1), and the maximizing capacity level is ko1, as identified in Lemma 1.

For Division 2, the ex-post performance measure in period t is given by

π2t(k2, ε2t, w2|µ) = R2(q2t, ε2t)− TP (k2, q2t|µ),

where

TP (k2, q2t|µ) = (w2 + c2) · q2t + µ · (k2 − q2t).

We denote by q̂2t(k2, ε2t, w2|µ) the maximizer of π2t(k2, ε2t, w2|µ). Suppose Division

2 seeks an initial capacity level k2 so as to maximize its expected performance measure

in any particular period t:

π2t(k2, ·|µ) ≡ Eε2 [R2(q̂2t(k2, ε̃2t, w2|µ), ε̃2t)− TP (k2, q̂2t(k2, ε̃2t, w2|µ))] .

Clearly, π2t(k2, ·|µ) ≤ π2t(k2, ·|c2) for all k2, since µ ≥ c2. As shown in the proof of

Lemma 1,

π2t(k2, ·|c) =
1∑
t γ

t
· Γ2(k2) ≡ Eε2 [R2(qo2(k2, ·), ε̃2t)− w2 · qo2(k2, ·)]− c2 · k2.

By definition, Γ2(k2) is maximized at ko2, and by the limited volatility condition,

1∑
t γ

t
· Γ2(ko2) = Eε2 [R2(ko2, ε̃2t)]− (w2 + c2) · ko2.

For any µ ≥ c2, q̂2t(k2, ε2t, w2|µ) ≥ qo2(k2, ·). Thus,

π2t(k2, ·|µ) ≤ π2t(k2, ·|c2) =
1∑
t γ

t
· Γ2(k2) ≤ 1∑

t γ
t
· Γ2(ko2) = π2t(k

o
2, ·|µ),
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proving that for any µ ≥ c2, Division 2 will choose k2 = ko2 regardless of the weights

it attaches to its performance measure in different periods. 2

Proof of Proposition 2:

Given a two-part full cost transfer pricing mechanism of the form TPt(k2, q2t) =

c2 · k2 + w2 · q2t, the claim follows directly from the arguments given in the proof of

Proposition 1. In particular, the arguments for goal congruence for Division 2 now

exactly parallels the one given for Division 1 in the previous result. 2

Proof of Lemma 2: The proof proceeds along the lines of the proof of Lemma 1.

In particular

CMit(ki|wit, εit) = max
qit≤ki

{xit ·Ri(qit, εit)− wit · qit}

is differentiable in ki and

CM
′

it(ki|wit, εit) = xit ·R
′

i(q
o
it(ki, ·), εit)− wit.

We can interchange the order of differentiation and integration to conclude that the

firm’s objective function Γi(ki) is differentiable with derivative:

Γ
′

i(ki) =
T∑
t=1

Eεit [xit ·R
′

i(q
o
it(ki, ·), ε̃it)− wit] · γt − vi.

Given the definition of w̄i ≡
∑T

t=1wit ·γt in the statement of Lemma 2, the first order

condition in the statement of Lemma 2 now follows immediately.

Proof of Corollary to Proposition 2:

The firm’s objective function for Division 2 is to maximize

T∑
t=1

Eε2 [CM2(k2|ε̃2t, w2t)] · γt − v2 · k2,

where
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CM2(k2|ε2t, w2t) = max
q2t≤k2

{R2(q2t, ε2t)− w2t · q2t} = R2(qo2t(k2, ·), ε2t)− w2t · qo2t(k2)

If w2t = x2t · w2, the above objective function reduces to

T∑
t=1

Eε2 [x2t · CM2(k2|ε̃2t, w2t)] · γt − v2 · k2

Given the transfer pricing rule

TPt(k2, q2t) = ẑ2t · v2 · k2 + w2t · q2t,

the expected profit for Division 2 in period t is given by

Eε2 [x2t ·R2(qo2t(k2, ·), ε̃2t)− x2t · w2 · qo2t(k2, ·)]− ẑ2t · v2 · k2.

Since ẑ2t = x2t∑T
τ=1 x2τ ·γτ

, Division 2’s objective function in period t is proportional

to the firm’s overall objective function, Γ2(k2), and thus Division 2 will choose the

optimal capacity level ko2 at the initial stage.

Proof of Proposition 3:

Given the limited volatility condition, the optimal koi is such that

Γi(k
o
i ) = Eεi

[
T∑
τ=1

γτ · xiτ ·Ri(k
o
i , ε̃iτ )

]
− (vi + w̄i) · koi

≥ Γi(ki)

= Eεi

[
T∑
τ=1

γτ · xiτ ·Ri(ki, ε̃iτ )

]
− (vi + w̄i) · ki

(25)

for all ki.

We next show that in order to maximize its expected profit in period t, the down-

stream division would choose ko2. To see this, we recall that because TP (k2) =

ẑ2t · (v2 + w̄2) · k2, the expected profit for Division 2 in period t bis given by
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Eε2 [π̃2t(k2)] = Eε2 [x2t ·R2(qo2t(k2, ·), ε̃2t)]− ẑ2t · (v2 + w̄2) · k2.

Clearly qo2t(k2, ·) = k2 as Division 2 is not charged any variable costs. We recall that

ẑ2t = x2t∑T
τ=1 x2t·γτ

, and therefore

Eε2 [π̃2t(k2)] = z2t ·

[
T∑
t=1

x2τ · γτ · Eε2 [R2(k2, ε̃2t)]− (v2 + w̄2) · k2

]
,

which, according to (25), is maximized at ko2.

The argument for Division 1 is the same since under relative benefit depreciation

rule the capital charge to Division 1 in period t is ẑ1t(v1 +w̄1) ·k1 if Division 1 invested

in k1 units of capacity. 2

Proof of Proposition 4:

As defined in the main text, the threshold type θ∗i is the one achieving a zero NPV

for the capacity investment k̄i; that is,

T∑
τ=1

Eεi
[
CMiτ (k̄i|xiτ , wiτ , ε̃iτ )|θ∗i

]
· γτ = vi · k̄i.

We note that the net present value, Γ(k̄i|θi), is increasing in θi. This follows directly

from Theorem 6D1 in Mas-Colell et al. (1995) because θi shifts the densities fi(·|θi)
in the sense of first-order stochastic dominance and CMit(k̄i|xit, wit, εit) is increasing

in εit. If the downstream division were to focus exclusively on its profit measure in

period t, 1 ≤ t ≤ T , it would be seek to maximize the following:

Eε2 [π2(k|θ2, ε̃2t)] ≡ Eε2 [CM2t(k2|x2t, w2t, ε̃2t)|θ2)]− z̄2t · v2 · k2.

Direct substitution for z̄2t according to the REOB rule shows that

Eε2 [π2(k|θ2, ε̃2t)] = Eε2
[
CM2t(k̄2|x2t, w2t, ε̃2t)|θ2

]
− Eε2

[
CM2t(k̄2|x2t, w2t, ε̃2t)|θ∗2

]
,

which will be greater than zero if and only if θ2 > θ∗2. 2
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Proof of Lemma 3:

The maximized contribution margin is given by

CM(k|w, εt) =
2∑
i=1

[Ri(q
∗
i (k, ·), εit)− wi · q∗i (ki, ·)]

where q∗i (k, ·) ≡ q∗i (k, w, εt)

Claim: CM(k|w, εt) is differentiable in k for any εt and w, such that

∂

∂k
CM(k|w, εt) = S(k|w, εt),

where

S(k|w, εt) = max{R′

1(q∗1(k, ·), ε1t)− w1, R
′

2(q∗2(k, ·), ε2t)− w2}.

We distinguish three cases:

Case 1: 0 < q∗1(k, ·) < k

It follows that q∗2(k, ·) > 0 and

S(k|w, εt) = R
′

1(q∗1(k1, ·), ε1t)− w1 = R
′

2(q∗2(k, ·), ε2t)− w2.

We then claim that for ∆ ≥ 0 sufficiently small,

CM(k + ∆|w, εt)− CM(k|w, εt)
∆

≥ S(k|w, εt). (26)

Like in the proof of Lemma 1, this inequality is derived from observing that

CM(k+∆|w, εt) ≥ R1(q∗1(k, ·)+∆, ε1t)−w1(q∗1(k, ·)+∆)+R2(q∗2(k, ·), ε2t)−w2 ·q∗2(k, ·).

Therefore, the left-hand side of (26) is at least as large as the following expression:

R1(q∗1(k, ·) + ∆, ε1t)−R1(q∗1(k, ·), ε1t)
∆

− w.
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As ∆→ 0, this expression converges to

R
′

1(q∗1(k, ·), ε1t)− w1 = S(k|w, εt).

Following the same line of arguments as in the proof of Lemma 1, we also find that

CM(k + ∆|w, εt)− CM(k|w, εt)
∆

≤ S(k|w, εt)

for ∆ sufficiently small and thus

∂

∂k
CM(k|w, εt) = S(k|w, εt).

Case 2: q∗1(k, ·) = k.

In this case q∗2(k, ·) = 0 and S(k|w, εt) = R
′
1(q∗1(k, ·), ε1t)− w1. Using the same argu-

ments as in Case 1, it can then be shown that ∂
∂k
CM(k|w, εt) = S(k|w, εt).

Case 3: q∗2(k, ·) = k.

In this case, q∗1(k, ·) = 0 and S(k|w, εt) = R
′
2(q∗2(k, ·), ε1t) − w2. For ∆ ≥ 0 suffi-

ciently small, it can again be shown that

CM(k + ∆|w, ε)− CM(k|w, ε)
∆

≥ S(k|w, εt).

To see this, note that

CM(k+∆|w, ε) ≥ R1(q∗1(k, ·)+∆, ε1t)−w1·q∗1(k, ·)+R2(q∗2(k, ·)+∆, ε2t)−w2·[q∗2(k, ·)+∆].

Therefore, CM(k+∆|w,ε)−CM(k|w,ε)
∆

is at least as large as the following expression:

R2(q∗2(k, ·) + ∆, ε2t)−R2(q∗2(k, ·), ε2t)
∆

− w.

As ∆→ 0, this expression converges to

R
′

2(q∗2(k, ·), ε2t)− w2 = S(k|w, εt).
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Following the same line of arguments as used in the proof of Lemma 1, it can also be

verified that
CM(k + ∆|w, εt)− CM(k|w, εt)

∆
≤ S(k|w, εt)

for ∆ sufficiently small, and thus

∂

∂k
CM(k|w, εt) = S(k|w, εt).

The expected value of the maximized contribution margin, Eε [CM(k|w, ε̃t)], is

identical across periods in the stationary setting. Hence, the firm will choose the

optimal capacity level k∗ to maximize the following objective function:

Eε [CM(k|w, ε̃t)]− c · k.

Equation (14) in the statement of Lemma 3 then follows from the first-order condition

of the above optimization problem. The uniqueness of k∗ follows from a similar

argument as used in the proof of Lemma 1. 2

Proof of Proposition 5:

We first show that with quadratic revenue functions of the form Ri(q, θi, εit) = θi · εit ·
q − hi · q2 and limited volatility, the efficient capacity level in the fungible scenario

is equal to the sum of the efficient capacity levels in the dedicated capacity scenario;

that is

k∗ = ko1 + ko2.

From Lemma 1, we know that in the dedicated capacity setting the efficient capacity

levels satisfy:

Eεi [R
′

i(q
o
1(koi , ε̃it), θi, ε̃it)]− wi = c.

The limited volatility condition implies that for all ε̃it

qoi (k
o
i , ε̃it) = koi .
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Furthermore, with quadratic revenue functions, we find that

Eεi [R
′

i(q
o
i (k

o
i , ε̃it), θi, ε̃it)]− wi = Eεi [R

′

i(k
o
i , θi, ε̃it)]− wi

= R
′

i(k
o
i , θi, ε̂it)]− wi

= c, (27)

where ε̂it ≡ E(ε̃it). In the fungible capacity scenarios, Lemma 3 has shown that at

the efficient k∗

Eε[R
′

i(q
∗
i (k
∗, ·), θi, ε̃it)]− wi = c.

It is readily seen that in the quadratic revenue scenario, q∗i (k
∗, θ, w, εt) is linear in εt

provided that q∗i (·) > 0 for all εt. Thus,

Eε[S(k∗|θ, w, ε̃t)] = Eε[R
′

i(q
∗
i (k
∗, ·), θi, ε̃it)]− wi

= Eε[θi · ε̃it − 2hi · q∗i (k∗, θ, w, ε̃t)]− wi

= θi · ε̂it − 2hi · q∗i (k∗, θ, w, ε̂t)− wi

= R
′

i(q
∗
i (k
∗, θ, w, ε̂t), θi, ε̂it)− wi

= c, (28)

where ε̂t ≡ E(εt). It follows from (27) and (28) that

q∗i (k
∗, θ, wi, ε̂t) = koi ,

and thus k∗ = ko1 + ko2.

It remains to show that (ko1, k
o
2) is a Nash equilibrium at the initial date. Given

the full cost transfer pricing rule TPt(k2, q2t) = c · k2 +w2 · q2t, the divisional profit of

Division 2 in period t, contingent on εt and ko1 is:

π2t(k2, εt|ko1) = δ·CM2(k2|θ2, w2, ε2t)+(1−δ)[CM(ko1+k2|θ, w, εt)−CM1(ko1|θ1, w1, εt)]−c·k2,

where, as before,

CMi(ki|θi, wi, εit) = max
qi≤ki
{Ri(qi, θi, εit)− wi · qi}.
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We note that in a stationary environment, the expected value of Division 2’s profit,

Eε[π2t(k2, ε̃t|ko1)], is the same in each period. By definition, ko2 is the unique maximizer

of Eε2 [δ ·CM(k2|θ2, w2, ε̃2t)]−δ ·c ·k2. By Lemma 3, ko2 maximizes Eε[(1−δ) ·CM(ko1 +

k2|θ, w, ε̃t)]− (1− δ) · c · k2. It thus follows that ko2 is also a maximizer of Division 2’s

expected profit in each period, Eε[π2t(k2, ε̃t|ko1)].

A symmetric argument can be used to show that in order to maximize its expected

residual income in any period, Division 1 will choose ko1 if it conjectures that the

downstream division chooses ko2. 2

Proof of Proposition 6:

Suppose that the two divisions has agreed to an ex-ante contract under which the

downstream division has initial rights for k2 units of capacity for a transfer payment

of p(k2) + w2 · q2t in each period. Further, suppose that Division 1 has installed a

capacity of k1 units over which it has unilateral rights.

After observing εt, the two divisions will renegotiate the initial capacity rights to

maximize the joint surplus in each period. Following the same arguments as used in

deriving (17), it can be checked that Division 1’s effective contribution margin after

reallocation of capacity rights is given by

CM∗
1 (k1+k2|w, εt) = (1−δ)·CM1(k1|w1, ε1t)+δ·[CM(k1 + k2|w, εt)− CM2(k2|w2, ε2t)] .

For stationary environments, the expected value of effective contribution margin,

Eε [CM∗
1 (k|w, εt)], is the same in each period. Since capacity assets are depreciated

according to the annuity rule, this implies that taking k2 as given, Division 1 will

choose k1 to maximize

Eε [CM∗
1 (k1 + k2|w, ε̃t)]− c · k.

As a function of k2, let r1(k2) denote Division 1’s optimal response; i.e., k1 =

r(k2) maximizes the above objective function. Let r(k2) ≡ r1(k2) + k2 denote the

corresponding aggregate amount of capacity. Division 1’s reaction function, r1(k2),
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will satisfy the following first-order condition:

Eε

[
(1− δ) · CM ′

1(r1(k2)|w1, ε̃1t) + δ · S(r(k2)|w, ε̃t)
]
≤ c, (29)

which must hold as an equality whenever r1(k2) > 0. We note from (29) that r1(k2) is

downward slopping because CM ′
1(k1|·) and S(k|·) are decreasing functions of k1 and

k, respectively.

We now investigate the values of r1(k2) at k2 = 0 and k2 = k∗. We first claim

that r1(0) ≤ k∗. Suppose to the contrary, r1(0) > k∗. This implies that r(0) > k∗,

and hence

Eε[S(r(0)|w, ε̃t)] < Eε[S(k∗|w, ε̃t)] = c. (30)

Furthermore,

Eε1 [CM ′
1(r1(0)|w1, ε̃1t)] < Eε1 [CM ′

1(k∗|w1, ε̃1t)]

= Eε1 [R′1(qo1(k∗, ε̃1t, ·), ε̃1t)− w1]

≤ Eε [R′1(q∗1(k∗, ε̃t, ·), ε̃1t)− w1]

≤ Eε[S(k∗|w, ε̃t)]

= c, (31)

where we have used the result that qo1(k∗, ε1t, ·) ≥ q∗1(k∗, εt, ·) for all εt to derive

the second inequality above. Inequalities in (30) and (31) imply that the first-order

condition in (29) cannot hold as an equality, which contradicts the assumption that

r1(0) > k∗ is optimal.

We next claim that r1(k∗) > 0, and hence r(k∗) > k∗. Suppose to the contrary

r1(k∗) = 0. This implies that r(k∗) = k∗, and hence

Eε[S(r(k∗)|w, ε̃t)] = c.

Furthermore,

Eε1 [CM
′
1(r1(k∗)|w1, ε̃1t] = Eε1 [CM

′
1(0|w1, ε̃1t] > c,
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because of the assumption in (21). It thus follows that the left hand side of (29) is

strictly greater than c, which contradicts the assumption that r(k2) = 0 is the optimal

response to k2 = k∗.

We have thus proven that r(0) ≤ k∗ and r(k∗) > k∗. The Intermediate Value

Theorem then implies that there exists a k∗2 ∈ [0, k∗) such that r(k∗2) = k∗. We

have thus shown that if the two divisions sign an ex-ante contract that provides the

downstream division with initial capacity rights of k∗2 units, Division 1 will choose the

efficient amount of aggregate capacity k∗.

To complete the proof, we need to show that there exists a fixed transfer payment

p(k∗2) such that the ex-ante contract (k∗2, p(k
∗
2)) will be preferred by both divisions

to the default point of no agreement. If the two divisions fail to reach an ex-ante

agreement, Division 1 will choose its capacity level unilaterally, and Division 2 will

receive no capacity rights (i.e., k2 = 0). Let k̂ denote Division 1’s optimal choice of

capacity under the “default” scenario. Division 1’s expected periodic payoff under

the default scenario is then given by

π̂1 = Eε

[
(1− δ) · CM1(k̂|w1, ε̃1t) + δ · CM(k̂|w, ε̃t)

]
− c · k̂

while Division 2’s default payoff is

π̂2 = (1− δ) · Eε
[
CM(k̂|w, ε̃t) − CM1(k̂|w1, ε̃1t)

]
.

By agreeing to transfer k∗2 units of capacity rights to Division 2, the two divisions can

increase their periodic joint surplus by

∆π ≡ Eε [CM(k∗|w, ε̃t)− c · k∗]− Eε
[
CM(k̂|w, ε̃t)− c · k̂

]
.

The two divisions can then split this additional surplus between them in proportion

to their relative bargaining power. The periodic transfer price p(k∗2) that implements

this allocation is given by

Eε [(1− δ) · CM1(k∗ − k∗2|w1, ε̃1t) + δ · CM(k∗|w, ε̃t)]− c · k∗ + p(k∗2) = π̂1 + δ ·∆π.
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Division 2’s expected periodic payoff with this choice of transfer payment will be

equal to π̂2 + (1− δ) ·∆π. Therefore, both divisions will prefer the ex-ante contract

(k∗2, p(k
∗
2)) to the default scenario of no contract (0, 0).
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