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In many theme parks, stores are located within major attractions to sell related merchandise. Sales at such stores form a significant portion
of theme park profits. Typically, store sales depend upon visitor flows through the attraction, customer satisfaction with the attraction, and
the merchandise at the store. In addition, such stores constitute a unique retail environment, as visitor flows to attractions can be managed
and stores are not competitors, but belong to the same parent company. This provides the opportunity to increase store sales by interfacing
park operations, which manages visitor flows by setting schedules and capacity of attractions, with the store-level merchandising process,

which determines which and how much product to order.

Motivated by a study at Universal Studios Hollywood (USH), we develop a flow management model to link park operations with
store-level merchandising. This model sets the capacities and schedules of the major attractions to increase visitor flows to high-profit retail
areas subject to visitor satisfaction, capacity, scheduling, and flow-balance constraints. In addition, this model serves as an important tool to
generate and evaluate various strategies aimed at increasing theme park profitability at USH.
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1. INTRODUCTION

The service sector represents a major portion of the Ameri-
can economy. It is estimated that the entertainment industry,
including segments such as movies, television, and theme
parks represents about 7.2% of this sector (U.S. Census
Bureau 1998). Theme parks are an important component
within the entertainment industry. There are 450 theme
parks around the country, which generated $9.1 billion in
revenues in 1999 and represent around 4.6% of the enter-
tainment industry (International Association of Amusement
Parks and Attractions 1997).

Customers at theme parks typically pay a fixed fee for
access to all attractions any number of times during a fixed
time period (ranging from one day to one year). Thus, profit
management in this environment has focused on increasing
visitors to parks by marketing and improving customer sat-
isfaction during visits through design, quality, and acces-
sibility of attractions to ensure repeat visits (Wells 1989,
Valenti 1997). As a direct consequence, a record number of
more than 309 million people visited theme parks in 1999
(USA Today, April 28; 2000). Stores featuring merchandise
related to an attraction (usually located within the vicin-
ity of the attraction) form an important part of the profits
generated for the theme park in addition to the entrance
fees. Store profits have been steadily increasing and com-
prise over 40%of total theme park profits (estimated from
Amusement Industry Abstract 1997).

Traditionally, park operations are responsible for choos-
ing capacities and schedules of attractions to minimize
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disruptions, for managing visitor flows to achieve reason-
able wait times, and for maximizing customer satisfaction.
On the other hand, the merchandising function at each
store is responsible for designing, selecting, and determin-
ing the order quantities of the merchandise associated with
the attraction to maximize store profits. Typically, product
demand at these stores is related to the visitor flow through
the associated attraction, the popularity of the attraction,
and the nature of the assortment at the store. This, cou-
pled with a unique retail environment at a theme park in
that visitor flows can be managed and individual stores
belong to the same company and are not competitors,
offers the potential for increasing store profits by interfac-
ing park operations and the merchandising process at indi-
vidual stores.

To better understand this interface, the second author
conducted a field study at Universal Studios Hollywood
(USH). In this study, he collected data by conducting
a comprehensive survey and used regression analysis to
explore the data. The main findings of the regression anal-
ysis were:

(1) Visitor flow patterns over time affect total store
profits.

(2) Schedules and capacity of attractions can influence
visitor flow patterns over time.

(3) In addition to the capacity, schedule, and visitor sat-
isfaction with an attraction, profits at the associated store
are strongly influenced by the merchandising process that
determines which and how much product to order.
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Details on the regression analysis that led to the above
findings are described in the subsequent sections of the
paper. Guided by these findings, we constructed a flow
management model to explicitly link park operations and
store-level merchandising. In this model, we set the capac-
ities and the schedule of attractions to manage park flows
to maximize overall store profits. This is subject to flow
balance, capacity, scheduling, work-force resource avail-
ability, and customer satisfaction constraints measured by
the minimum number of rides a customer could take per
visit across all attractions at the park.

The problem of coordination between park operations
and store-level merchandising faced at theme parks can be
considered to be a part of a broader stream of research
that focuses on understanding the benefits of coordination
between the operations and the marketing functions of a
firm. Karmarkar (1996) provides a comprehensive classifi-
cation and summary of research in this area. While this link
has been extensively explored in manufacturing (Eliashberg
and Steinberg 1993), we have found no equivalent investi-
gation into the service industry in general and particularly
into the theme park industry with its unique characteristics.

The problems of theme park operations management and
retail profit management have been separately studied in
different contexts. Ahmadi (1997) considers the theme park
flow management problem at the Six Flags Magic Moun-
tain theme park in Southern California. In that paper, mod-
els are developed for the estimation of ride capacity and
ideal customer transition patterns, and the results of these
models are used as inputs to optimal capacity management
and tour design models. However, in this paper, store prof-
its are not considered and flows are managed to optimize a
measure of customer satisfaction rather than overall theme
park profits. There have been several streams of research
that have demonstrated the potential for improving retail
profits using a structured model-based approach (Rajaram
1998). However, none of this work considers this problem
in the unique retail environment of the theme park.

This paper is organized as follows. In the next section,
we briefly describe USH, the theme park where we con-
ducted the field study. We then briefly describe the data
collection process and present a preliminary data analysis.
In §3, we provide details on the regression analysis con-
ducted on this data and use the results to motivate the flow
management linking park operations with store-level mer-
chandising. Section 4 describes the model for park flow
management. We develop an easily implementable heuristic
to solve this problem and establish a tight upper bound on
the optimal solution to this problem to evaluate the perfor-
mance of the heuristic. We test the heuristic and the upper
bound by performing computational experiments on real
data gathered from the survey and also use the heuristic to
conduct a numerical analysis to develop structural insights
into this problem that will be useful for its practical imple-
mentation. In the concluding section, we describe the main
results and their implications when the flow management
model is applied at USH.

2. FIELD STUDY

USH is the largest film and television studio in the world
and is located in a 400-acre facility in Southern Califor-
nia. Within this studio, USH operates a theme park, which
opened in 1964. The unique feature of this theme park is
that its attractions are associated with popular motion pic-
tures such as Jurassic Park, ET, and Back to the Future.
The basic concept behind these attractions is to enable vis-
itors to personally experience a part of these movies. In
addition, within or near these attractions are stores that sell
associated merchandise and contribute significantly to park
profits. There are a wide variety of stores ranging from
Hollywood-style clothes to unique products. For exam-
ple, Universal Ranch consists of western apparel and hard
goods while Take Two sells signature Universal Studios
souvenirs.

The park is divided into two main sections: the Entertain-
ment Center (at the top of the hill) and the Studio Center
(at the bottom of the hill). The Starway, the world’s largest
escalator, connects these two distinct sections. The Enter-
tainment Center has mostly show-type attractions where the
visitors are part of the audience, while the Studio Center
consists mostly of ride-type or more interactive attractions.
This layout of the park has implications for the visitor flow
patterns within the park. For instance, it is usually recom-
mended by studio guides that visitors finish everything they
want to see at the bottom of the Starway before going up to
the top, because traveling up the Starway takes about 10 to
15 minutes and time could be wasted going back and forth.
In addition, visitors can take a backlot tram tour to under-
stand how special effects in movies are created, although
capacity and schedules at the other attractions significantly
affect the wait time at this attraction.

While there are more than 20 attractions at the park, it
has been observed that some attractions consistently have
a larger number of visitors and greater occupancy lev-
els. Such attractions are classified as major attractions. For
example, Jurassic Park, ET, and Back to the Future are all
considered major attractions. The capacity and schedules of
major attractions affect visitor flows in the park. In addi-
tion, waiting lines for such attractions are much longer in
the middle of the day, although they usually shorten dra-
matically before the park closes. It has also been noted
that products related to the major attractions are very popu-
lar, thus influencing merchandise selection and sales at the
associated stores.

In addition to the attractions, the USH theme park has
about 15 restaurants and more than 20 merchandising estab-
lishments associated with these attractions. The park is usu-
ally open from 9 a.m. until 7 p.m., with peak hours usually
occurring between 2 p.m. and 3 p.m. On average, around
16,000 visitors visit USH each day, and the number of visi-
tors in the park during peak hours can be as high as 14,000.
During holidays such as Thanksgiving and Christmas there
are usually over 40,000 visitors to this park.

The total annual profits at USH are over $50 million,
and the proportion of profits from stores has been increas-
ing over the years at a greater rate than profits from ticket



receipts. Realizing the growing importance of this com-
ponent in total profits, USH wanted to explore strategies
to further increase these profits by better managing visitor
flows to the stores, which led to our involvement.

2.1. Data Collection and Analysis

The first step of our study was to collect data to analyze
how visitor flow patterns over time affect total store profits,
how schedules and capacity of attractions can influence vis-
itor flow patterns over time, and finally, how the merchan-
dising process affects store profits. To collect the required
data, we chose seven different weeks during the period
from March 1, 1999 through September 6, 1999. This
period was chosen because it covered the spring break hol-
iday (during March) and the peak holiday season between
Memorial Day and Labor Day (from May through Septem-
ber) in the United States. We chose one week from each
month and collected data on each day of this week to
account for changes in intraday flow patterns due to the
volume of visitors arriving in the park.

On each survey day, we distributed a survey termed as
the “diary survey,” which records the movements of sev-
eral visitors throughout the day. Details on how we devel-
oped, tested, refined, and implemented this survey can be
found in Ahmadi and Rajaram (2000). The objectives of
the diary surveys were to collect data to perform regression
analysis and to estimate parameters for the flow manage-
ment model. To meet these objectives, we requested the
following information in the diary: name of attraction, time
in (this is the time they entered the queue for the attrac-
tion), time out (time they exited the attraction), customer
satisfaction rating for each attraction (on a scale of one to
seven, with seven being the highest), and dollars they spent
at each store associated with the attraction. We conducted
this survey on each day of seven different weeks over a
seven-month period from March through September 1999.
Finally, on the survey days, we collected data on store prof-
its over time across all the stores associated with the major
attractions and also recorded the schedule and capacities at
each of these attractions.

We first wanted to verify that the data from the 49 sur-
vey days chosen for our analysis were representative of
typical traffic arrival patterns at different times at this park.
To do so, we calculated the average arrivals per hour for
each day of the week, using the survey data over the seven-
week period. We also calculated the average arrival per
hour for each day of the week, using two years of historical
data recorded by USH. We then calculated the correlation
between the average arrival per hour from the survey data
and the historical data, and found this to be at least 90% for
each day of the week. While the total average number of
visitors between the days in each comparison varied, their
distribution in arrival to the park seemed stable. Because
much of the analysis in this section uses visitor arrival pat-
terns per hour, it seems reasonable to generalize the results
to the other days.
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To assess whether the spending patterns of customers in
the survey were representative of the larger set of customers
who visit the theme park, we computed the fraction of sales
at each store for all the customers who participated in the
survey. We then compared this to the fraction of sales at
each store using total aggregate sales and found it to be
very similar. We also computed the average sales per cus-
tomer in the survey and found that it was almost identical
to the average sales per customer calculated using histori-
cal data. These results suggest that the spending habits of
customers in the survey were representative of the larger
sample of customers who visit USH.

Next, to analyze visitor flow patterns, we segmented the
park into eight sections consisting of six areas, the entrance,
and the exit, as shown in Figure 1. The six areas are largely
characterized by their major attractions. The criteria we
used in segmenting the areas were to segregate the major
thoroughfares in separate areas and to balance the number
of major attractions among the areas. Based on the diary
survey, we computed the proportion of visitors over time
in a given area and also computed the proportion of vis-
itors over the six areas in a given time. Thus, given the
total number of visitors in the park, we can use these per-
centage estimates to calculate visitors in an area at a given
time. These values are important in several of the regres-
sion analyses performed in the next section. Using the sur-
vey, we also computed the fraction of visitors who move
from the entrance to a particular area at a given time and
the fraction of visitors who move from one area to another
at a given time. These fractions serve as important inputs
to the flow management model.

3. FINDINGS

In this section, we provide details on the regression analysis
of the data and synthesize our findings. These findings pro-
vide insights that led to the optimization model described in
this paper. We start by analyzing the relationship between
store profits and visitor flows.

Figure 1. Layout of Universal Studios Hollywood.
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3.1. Profits and Visitor Flows

To analyze the relationship between total store profits and
visitor flows in the park during that period, we developed
a multiple linear regression. In this regression, the depen-
dent variable was defined as total store profits at a given
time, while the independent variables were defined as the
estimated number of visitors at each area at different times.
The adjusted R? for this regression was over 96%, and sig-
nificant at an « risk level of 0.03, where the « risk level
is the probability that we conclude the regression is signif-
icant when it is not. In addition, we have found that the
t-statistic associated with each variable in this regression
was significant with an individual « level of 0.10 or less.
This analysis suggests that total store profits are strongly
affected by visitor flows in the park across time. From this
regression, we also concluded that total store profits are
negatively correlated with the estimated number of visitors
in areas 2 and 3 (i.e., at the bottom section and backlot
tour), and that they are positively correlated with the num-
ber of visitors in areas 1, 4, 5, and 6 (all other areas). This
is because stores in areas 2 and 3 contribute a smaller share
to total store profits than stores in all the other areas.

3.2. Visitor Flows, Capacity, and
Scheduling of Attractions

To analyze how the capacity and schedules at the associated
main attraction affect visitor flows at a particular area, we
constructed a multiple linear regression at the main attrac-
tions in each area. In this regression, the dependent vari-
able is defined as the number of visitors at each attraction
at a given time, and the independent variables are defined
as the capacity of the attraction at that time and the sched-
ule on a given day (with 1 representing a scheduled start
during that hour and O otherwise).

It is important to note that in this regression, visitor
flows themselves could influence capacity. The problem
in which an independent variable could be influenced by
a dependent variable in regression analysis is commonly
referred to as the identification problem. To address the
identification problem in our regression, we used two stan-
dard methods, namely, the indirect least squares and the

Table 1.
ity at major attractions.

two-stage least squares method (Rao and Miller 1971). In
the indirect least squares method, we express capacity as
a function of the schedules and the workforce availabil-
ity and substitute this function into the original regression
with visitor flows. In the two-stage least squares method,
we first develop a regression for capacity as a function of
visitor flows and workforce levels, and then use the esti-
mated value for capacity from this regression in the original
regression relating visitor flows with capacity and sched-
ules. Table 1 lists the adjusted R? along with the « level for
the regression and the independent variables representing
the capacity and schedule for the major attractions in each
area. Here, the adjusted R? is based on the lower value from
these methods. This analysis implies that visitor flows at a
particular area are indeed strongly affected by the capacity
and schedules of the major attractions in that area.

To test the goodness of fit of these regressions, in each
area we used half the data to fit the regression and cal-
culated the difference between predicted and actual visitor
flows for the other half of the data. This calculation showed
that the average absolute error between predicted and actual
visitor flows across all areas was 9.6% of the actual visitor
flows. The results in this section, coupled with the results
of §3.1, provide a logical basis to develop the flow manage-
ment model using the capacity and schedules of the major
attractions as decision variables in maximizing store profits
in the theme park.

3.3. Store Profits, Visitor Satisfaction, Capacity,
and Scheduling of Attractions

To assess how individual store profits are affected by vis-
itors’ satisfaction with the associated attraction and its
capacity and schedule (or, implicitly, visitor flows using the
results of §3.2), we considered the store associated with
the leading attraction for a given area and developed a
multiple linear regression. In this regression, the dependent
variable is defined as the total profit at the store during a
given time, and the independent variables include the vis-
itor satisfaction ratings and the capacity level at that time
for the associated attraction, as well as an indicator vari-
able for schedules at the attraction (1 if it starts during that

Regression results for analysis relating visitor flows to schedules and capac-

Major Attraction

(Associated Area) Adjusted R?

a Risk Level
for Regression

« Risk Level
for Schedule

a Risk Level
for Capacity

Backdraft (1) 0.9
Cinemagic (1) 0.8
Jurassic Park (2) 0.95
ET (2) 0.94
Back to the Future (3) 0.97
Backlot Tram Tour (3) 0.9
Water World (4) 0.85
Nickelodeon (4) 0.8
Animal Stars (5) 0.75

Wild, Wild, Wild West (6) 0.88

0.001 0.003 0.004
0.005 0.007 0.008
0.0008 0.001 0.0009
0.0008 0.0009 0.001
0.0003 0.0004 0.003
0.0009 0.001 0.0011
0.007 0.009 0.008
0.0048 0.006 0.0055
0.01 0.011 0.012
0.001 0.0014 0.0013




Table 2.
major attractions.
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Regression results for analysis relating store profits to visitor satisfaction ratings, capacity and schedules of

Adjusted R?
for Regression

Associated Major

Store Names Attraction and (Area)

a Risk Level
for Regression  Visitor Satisfaction

a Risk Level for  « Risk Level «a Risk Level

for Capacity for Schedules

Backdraft Souvenirs Backdraft (1) 0.55
ET’s Toy Closet ET (2) 0.6
Jurassic Outfitters Jurassic Park (2) 0.65
Backlot Tram Tour Backlot Tram Tour (3) 0.7
Tram Central Backlot Tram Tour (3) 0.58
Tram Kiosk Backlot Tram Tour (3) 0.6
Time Travelers Back to the Future (3) 0.62
Nickelodeon Too Nickelodeon (4) 0.7
Animal Stars Store Animal Stars (5) 0.67
Universal Ranch Store  Wild Wild 0.65
Wild West (6)
Silver Screen Wild Wild 0.7
Wild West (6)
Take Two Wild Wild 0.72

Wild West (6)

0.15 0.16 0.17 0.18
0.1 0.11 0.15 0.13
0.07 0.08 0.07 0.08
0.06 0.08 0.06 0.07
0.12 0.12 0.13 0.12
0.012 0.015 0.013 0.014
0.09 0.01 0.01 0.009
0.05 0.06 0.05 0.07
0.06 0.08 0.08 0.07
0.06 0.07 0.08 0.06
0.04 0.05 0.06 0.07
0.03 0.06 0.05 0.04

hour and O otherwise). We developed this regression for
12 stores, each associated with a major attraction, cover-
ing all six areas. These results are summarized in Table 2.
Here it is important to recognize that some but not all of
the expected profits at a store are due to visitor satisfac-
tion with an attraction and to visitor flows to the store. The
residuals of the regression are the “merchandising effect,”
which indicates the degree to which the profits of the stores
are attributable to the choice of assortment on the shelf.

To better understand the merchandising effect, we define
the conversion efficiency ratio for a store as the ratio of
the number of transactions to the number of visitors enter-
ing the store in a given time period. This provides a mea-
sure of the effectiveness of merchandise planning at a given
store. We computed the conversion efficiency ratios at the
store associated with a main attraction across all areas. We
found that stores with low conversion efficiency ratios cor-
responded with stores with low R? in Table 2. This suggests
that the merchandising effect is important in these areas
and that lowered conversion ratios could be attributable to
poor merchandise planning. On the other hand, stores with
high ratios have a high R?, suggesting that once the mer-
chandise is well positioned, profits are determined largely
by visitor flows.

3.4. Synthesis of Key Findings

The main findings of our analysis are as follows. In §3.1,
we find that at any given time, total profits are affected by
visitor flows in different areas. For instance, total profits
are negatively correlated with the number of people in the
backlot tour and bottom section. This is intuitive because
there are not many stores in these areas. Second, profits are
positively correlated with visitors in all other areas, because
this is where the main stores are located. Given this, it may
be desirable to manage visitor flows to favor areas with
potentially high retail profit. To achieve this, natural vari-
ables would be to manipulate the schedules and capacity

of the main attraction. The results in §3.2 imply that these
parameters affect visitor flows. This provides a direct moti-
vation to develop a flow management model to maximize
total profits at the theme park by optimally setting capacity
and scheduling across all of the major attractions.

In §3.3, when we perform a multiple regression relat-
ing individual store profits to the visitor satisfaction rating
and to the flow management variables (i.e., capacity and
schedules of the attraction), we find that there is a notable
residual in all cases. This residual is representative of the
effect of the merchandise and its stock levels at these stores.
To measure the effectiveness of merchandise planning, we
developed the conversion efficiency ratio for a store, which
is defined as the ratio of the number of transactions to the
number of visitors entering the store during a given time
period. This measure is low for stores with high residuals,
suggesting the potential to improve merchandising at these
stores. In addition, this measure can be used to identify
stores with merchandise selection and stocking problems.
Conversely, when this measure is high, we find that residu-
als in the regression are low, suggesting that once merchan-
dise planning is well executed, manipulating flows could
further increase profits. This provides additional motivation
for the flow management model developed in the next sec-
tion.

4. FLOW MANAGEMENT MODEL

Motivated by the findings of the field study, which sug-
gest that total store profits are affected by visitor flow pat-
terns and that visitor flow patterns to an attraction can be
managed by setting its capacity and schedule, we devel-
oped a flow management model for linking park operations
with store profits. Given the store merchandise and asso-
ciated average profits per visitor from the store associated
with the attraction, the flow management model aims at
setting the capacities and schedules of all attractions in the
park. The objective is to manage visitor flows to maximize
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total store profits across the park, subject to flow balance,
capacity, scheduling, workforce resource availability, and
customer satisfaction constraints. Depending on the type of
attraction, we assume that resources can be moved from
one period to the next. For example, operators are often
cross-trained and, depending on queue lengths, are assigned
to one attraction during one period and another attraction
during the next period. In addition, we also assume that
the capacity at any particular attraction can be altered, for
instance, by changing the number of operators or by bring-
ing on more cars for a ride, or both. These assumptions
are consistent with our observations at USH and at several
other theme parks.
To develop the flow management model, we consider
a theme park with m attractions and let ie(1,...,m)
index the set of attractions. Each attraction can operate
at n capacity levels and let j € (1,...,n) index the set
of capacity levels. We consider 7 time periods and let
te(1,...,T) index the set of time periods. To choose the
capacity level and schedule of the attractions, define the
variables:
1 if attraction i is operated at capacity level
Yijt = J at time period ¢,
0 otherwise.
= number of visitors moving from attraction s to
attraction i at the beginning of time period ¢. Here,
we also consider the case s = i, to include the
possibility that a customer immediately revisits
attraction i.
Q;, = number of visitors in line at attraction i in the
beginning of period ¢.
S;; = number of visitors served by attraction i during
period 7.

F,

sit

We are given:

W, = average profit per visitor from the store associated
with attraction i.

A, = number of visitors who arrive at the park at the
beginning of time period ¢.

P, = fraction of arriving visitors at time period ¢ who
first go to attraction i.

P, = fraction of visitors who move from attraction s to
attraction 7 at the beginning of period ¢, including
the case s =i.

C,, = capacity of attraction 7 at level j per time period.

b;; = workforce resources required if attraction i is run

at capacity level j.

B, = total workforce resources available at the park dur-

ing time period ¢.

M = the minimum number of trips a visitor likes to

make across all attractions at the park per visit.

This includes multiple trips to the same attrac-

tions. M is defined as a specified percentile of vis-

itor preferences and can also be regarded as a cus-
tomer service parameter. For example, based on

previously collected data by USH, setting M = 10

would set the minimum ride requirements for 90%

of the visitors.

The flow management model can be represented by the
following linear mixed-integer program, which we call the
Theme Park Profit Maximization Problem (TPPMP):

m m T
(TPPMP) Z=Max >3 Y W,F,, 1)
s=1i=11=1
subject to
ZF;'iz = ZPsitSs(t—l) Vi, t, @
s=1 s=1

Qit = Qi(ffl) + Z F;, +ArPit - Sit Vi, 1, (3)
s=1

Sy < Qi Vit “)

S <2 Ciyye Vi, (5)
j=1

Zyij, =1 Vi,zt, (6)

j=1

Z Z bijyijt <B, Vi, (7

i=1 j=1

ii&f =M (ifh)’ ®)

t=1i=1
Qit’ F:vit’Sit>0 Vi, t, (9)
vy € {0, 1} Vi, r. (10)

Objective function (1) is chosen to maximize total profits
across the entire park. Constraints (2) and (3) represent vis-
itor flow conservation and queue length for each attraction
at each period respectively. Constraints (4) and (5) together
ensure that the number of visitors served at an attraction
is no more than the size of the queue at the attraction
before it’s started or the capacity of that attraction during
that period. The condition that only one capacity level per
period is chosen at a given attraction is enforced by (6),
while (7) ensures that the choice of capacity levels across
all rides meets the available workforce resources in the park
during a given time period. Constraint (8) enforces the con-
dition that the total visitors served at all attractions in the
park during periods 1 to T is required to be over a certain
value. This value depends on the total number of visitor
arrivals and the minimum number of rides each visitor likes
to take, defined by M. (9) and (10) impose nonnegativity
and integrality conditions, respectively.

Note that the TPPMP is NP-Complete. To see this result,
observe that the TPPMP contains a knapsack problem
defined by (7), which is known to be NP-Complete. There-
fore, by restriction, the TPPMP is NP-Complete. In light
of this result, it is unlikely that we could solve large, real
problems to optimality. We confirmed this in our appli-
cation. Consequently, we elected to develop the following
heuristic to solve this problem.



4.1. Heuristic

We describe the two-phase heuristic that we developed to
solve the TPPMP. In the first phase of this heuristic, we
determine a variety of allocations of workforce resources
to the attractions. In the second phase, we use these alloca-
tions to determine flow patterns to maximize overall park
profits.

Phase 1: Allocation Phase. In the first phase of this
heuristic, we solve the following subproblem that we call
the Workforce Allocation Problem (WAP) to determine the
allocation of workforce resources to the attractions:

T m n
(WAP) W =Max) > > W,C,y;, (1)

=1 i=1 j=1
Subject to
(6), (7) and (10).

Objective function (11) of the WAP is structured to allo-
cate the workforce resources of the park across periods
to maximize the capacity of the rides in the highest retail
profit generating areas, subject to constraints (6), (7), and
(10). As this problem is decomposable by time, we omit the
subscript ¢ without loss of generality, but solve this prob-
lem for each of the T time periods. The k best solutions
for this problem during a given time period are computed
using the following algorithm.

Step 1. Construct a layered network G = (N, E) with the
following characteristics:

Layers. The number of layers in the network is equal
to m+2. Layers 0 and m+ 1 include only one node corre-
sponding to the source node S and the sink node §’, respec-
tively. Here, S represents all the attractions before the allo-
cation of workforce resources and S’ represents all of the
attractions after the allocation of workforce resources. Lay-
ers 1 through m correspond to attractions 1 through m.

Nodes (N). Nodes other than the source and the sink
node in the network are identified by a couplet (i, j(i)),
where i(1 < i < m) denotes the layer number or, equiva-
lently, the attraction and j(i) represents a potential value for
its workforce requ1rement where Min(}_,_, by, L' B)<j()<
Min(}",_, b, B), bk = min,{b,;}, and bU =max;{b,} Vp.
Here, we assume that j(i) increases 1ncrementally by one
unit in its range so that there are Min(}_' B) —
Mm(z _1 by, L B) nodes in each layer.

Dzrected Arcs (E). Excluding the source and the sink
node, each directed arc (i, j(i)) = (i+1, j(i+1)) connects
a pair of nodes from adjacent layers in the network. Node S
is connected to all nodes in layer 1 with (S) — (1, j(1))
representing a directed arc from the source to a node in
the first layer. Finally, all nodes in the final layer m are
connected to the sink node §’, with (m, j(m)) — (S’) rep-
resenting a directed arc from a node in the last layer to the
sink.

Costs. Let C(x) denote the cost of arc x in E. Then,
the cost of each arc can be written as

C(($) = (1,j(1)) =0 V1), (12)

plp’
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C((m, j(m)) - (§') =0 Vj(m), (13)

C((A,j(@) — (i+1,ji+1)))
W,C, if j(i+1)—j(i)=be{b,/j=11t0n}

= Vi, j(i), (14)
00 Otherwise.

Equations (12) and (13) ensure that the costs of travers-
ing a directed arc from the source node to nodes in layer 1
or from nodes in layer m to the sink node is 0. The costs of
traveling from a node in the set (i, j(i)) to a node in the set
(i+1, j(i+1)) is represented by (14). Here, these costs are
set to the capacity required at the attraction weighted by the
profit generated at its retail area of location if the resource
allocation at node j(i+1) represents a feasible workforce
requirement level at attraction i+1. Otherwise, these costs
are set to a large number for an infeasible resource alloca-
tion level.

Step 2. The k longest paths between the source and sink
node determine the k best solutions to the WAP. We find the
k longest paths using the well-known double-sweep method
(Phillips and Garcia-Diaz 1981, pp. 72-77). The complex-
ity of this method can be shown to be of order O(kB?)
(Phillips and Garcia-Diaz 1981, p. 90). Each longest path
gives the associated capacity allocation at each attraction at
a given period.

Steps 1 and 2 are repeated for each time period to find
the k best capacity allocations during every period.

Phase 2: Flow Phase. Let Z(y") represent the linear pro-
gramming solution to the TPPMP when the workforce and
the corresponding capacity allocations y” at each period are
fixed according to the rth longest path. We set the heuris-
tic solution to Z# = Max,_; ,+{Z(y")}. Next, we establish
an a priori worst-case bound on our heuristic.

ProrosITION 1.

maX(C,;f)

VAVARS a=max | ——
Injln(cij)

ProoF. Given the capacity allocation levels at each attrac-
tion and time period, the TPPMP is a pure linear program
defined by (2)—(5) and (8)—(9). To provide a generalized
representation of the optimal solution to this program, we
represent this in the standard general matrix form, where
Z =Max{PTx/Ax = g, x > 0}. Let B represent the opti-
mal basis of this linear program and P} correspond to the
coefficients of the objective function corresponding to this
basis. Then, it is well known that any optimal solution to
this linear program will be of the form Z =PI B~ 'g.

Let g correspond to g, when we set all the right-
hand-side coefficients C;; corresponding to (5) to the max-
imum values at each attraction and time period. For this
case, let By represent the optimal basis and P} . repre-

max
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sent the optimal objective coefficients corresponding to this
basis. The optimal value of the associated linear program is
Zoax = Pp nax B 8max- Similarly, let Z . =P} . B

when all C;; corresponding to (5) are set to the minimum
value at each attraction and time period. It is important to
note that Z, > Z_,, and that Z < Z_,,. Combining these
inequalities, we get Z/Z, < Z,../Z

Next, let

max min min8min

max min*

max(C;;)
j

a=max | ———
i m.in(Ci/‘)
] ]

Observe that Z,, = P} . B\ g < Pi . Biag, =
aPj .B = aZ,,,, because « scales the right-hand
side of (5) from the lowest possible capacity level for each
attraction and time period to the highest possible capacity
level across all attractions and time periods. This, by def-
inition, is larger than the highest possible value of C;; at
each individual attraction and time period used to calculate
Zmax' ThllS, Zmax/Zmin < a.
We use the inequality Z
result Z/Z, < Z,../Z

min&min min>®

max/ Zmin < o along with the

max min to get

maX(C,-j)

Z/Z"<a=max | +———1]. O
/77 s i min(C;)
J

In practice, we have found that o = 1.42 for the USH
theme park and is equal to around 1.5 for the Six Flags
Magic Mountain theme park also located in Southern Cali-
fornia (Ahmadi 1997). Thus, even under the a priori worst-
case performance criteria, this heuristic provides an effi-
cient basis to address this problem.

4.2. Upper Bounds

To evaluate the quality of this heuristic, we develop an
upper bound on the TPPMP. To compute this bound, we
introduce w > 0, a vector of Lagrange multipliers associ-
ated with constraint (5), which links the continuous and
binary variables in this problem. We relax this constraint to
decompose the problem into the following subproblems:

m T n
(WMP)  Z,(u) = Max Z Z Z Mircijyz'jr

i=1 =1 j=1
subject to

(6), (7), and (10),

m m T

(FMP)  Z,(p) = Max Z Z Z (Wi Fiy — 144, Sir)

subject to
(2) to (4), (8) and (9),
(RTPPMP)  Z(u) = Z, (1) + Z5().

The Lagrangean dual corresponding to (RTPPMP) is given
by

(DTPPMP)  Z = Min(Z,(w) +Z:(w)).

The Relaxed Theme Park Profit Management Problem
(RTPPMP) consists of a Workforce Management Problem
(WMP) and a Flow Management Problem (FMP). The
WMP determines the best workforce resource allocation to
maximize the capacity of the park. The FMP determines
the ideal visitor flow patterns to optimize total store prof-
its. Of course, the actual solution values for the decision
variables may be of little significance. The dual variables
M may be interpreted as the value of operating the ride in
the WMP, while they represent the cost of ride operation
in the FMP. The solution to the DTPPMP provides a tight
upper bound Z on the TPPMP.

It is important to observe that the WMP is identical
in structure to the WAP in the allocation phase of the
two-phase heuristic, and therefore, it is solved in a simi-
lar manner changing the arc costs appropriately. The FMP
is a standard linear program, which is solved using the
MINOSS solver in GAMS (Brooke et al. 1992). We solve
the Lagrangean dual problem (DTPPMP) using a subgradi-
ent method (Bertsekas 1995) to choose the multipliers used
to tighten the bound as much as possible. This procedure
was incorporated using a specialized C program and linked
to GAMS.

4.3. Computational Experiments

In this section, we conduct computational experiments to
evaluate the actual performance of the heuristic using sev-
eral “realistic” subproblems extracted from the data set
from USH. Here, each subproblem is defined by the time
periods, the number of attractions, and the possible capac-
ity levels at each attraction. We used two levels for time
periods and four levels each for attraction and capacity,
generating 32 (i.e., 2 x 4 x 4) subproblems. Based upon a
prior survey by USH and the 90th percentile of visitors in
this survey, we set M = 10. We tried to solve the TPPMP
corresponding to these problems using leading commer-
cial software tools such as the OSL solver in GAMS and
CPLEX (1995). However, we found that these tools were
unable to generate feasible solutions to the larger subprob-
lems. This provides validation for developing and using
the two-phase heuristic we have developed to address this
problem.

Next, we solved each subproblem using the two-phase
heuristic. A specialized C program was written for the allo-
cation phase of this heuristic and we set k = 10 in com-
puting the k longest paths in the second step of this phase.
The second phase was solved using the MINOSS solver
in GAMS, which is designed to solve linear programs
effectively. To evaluate the performance of the heuristic,
we also generated a Lagrangean dual-based upper bound
using the procedure outlined in §4.2 for each correspond-
ing problem. Define the percentage gap of the heuristic



as 100(Z — z")/Z". Across the 32 subproblems, the per-
centage gap varied from 0.8% to 7%, with an average of
approximately 3%. We also computed the a priori worst-
case performance for any heuristic for these subproblems
using Proposition 1. This varied from 120% to 150%,
averaging around 140%. These results provide a strong jus-
tification for using the two-phase heuristic to solve larger-
sized practical problems. In the concluding section, we use
the heuristic to solve the specific problem at USH and to
discuss the main results and their implications.

4.4. Numerical Analysis

In this section, we analyze the structure of the solutions
of the 32 subproblems considered in the computational
study. The purpose of this analysis is to use the solution
structure to develop generalizable insights that can then
be used to develop robust operating policies in the park.
In the solutions to each of the 32 subproblems, we found
that attractions associated with areas with high retail profits
were assigned more frequent shows with smaller operat-
ing capacities, while attractions associated with areas with
low retail profits were assigned less frequent shows with
higher operating capacities. In addition, we also found that
the solution to each subproblem suggests a more staggered
closing of the park, in which attractions in lower-profit
retail areas close a few hours before attractions at the high-
profit retail areas. In the final section, we discuss how these
aspects of the solution structure affect visitor flows and
store profit.

To test the sensitivity of the solution structure to changes
in retail profits per area, we changed the weights represent-
ing average retail profits per area in the objective function,
so that the previous high retail profit areas were lowest,
and vice versa. Even in this case, we observed the same
solution structure, suggesting that these results are robust
to changes in retail profits per area.

Finally, to understand the consequences of deviating
from the solution structure, we performed the following
analysis for each of the 32 subproblems. In this anal-
ysis, attractions associated with high-profit retail areas
were now scheduled less frequently with higher capaci-
ties, while attractions associated with low-profit retail areas
were scheduled more frequently with lower capacities.
In addition, we closed the attractions at the low-profit
retail areas later than attractions at the high-profit retail
areas. We now found that across the 32 subproblems, total
retail profits dropped by over 50% on average, ranging
from 20% to 70%. These results indicate the importance
of interfacing park operations with store merchandising
decisions.

5. APPLICATION

We tested the TPPMP with data from the field study. The
objective of this analysis was to determine the schedule
and capacity at each major attraction to optimize park prof-
its at USH. Major attractions are defined as those attrac-
tions that consistently have a larger number of visitors and
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greater occupancy levels than the typical attraction. We
used the TPPMP to address this problem. The test prob-
lem consisted of 10 major attractions over 10 time periods
(between 9 a.m. and 6 p.m.), and each attraction had 20
potential capacity levels. We were not able to find feasible
solutions for this model using GAMS. In contrast, the spe-
cialized C program of the two-phase heuristic produced a
solution within a few minutes on a Dell desktop computer.
To assess the quality of this solution, we also generated a
Lagrangean dual-based upper bound for the TPPMP. The
resulting upper bound was, on average, around 2% higher
than the heuristic solution.

Next, we computed profits using existing capacity and
schedules and compared it to the profits from the two-
phase heuristic. This analysis suggested that had the sched-
ules and capacity of the two-phase heuristic been imple-
mented, the average profits during the test period would
have increased by over 9%. This translates to a potential
increase in annual profits of over $6 million. To better
understand the underlying reasons for this improved prof-
itability, we compared the existing schedule to the solution
provided by the heuristic. We found that the heuristic solu-
tion suggested more frequent shows with smaller operating
capacities at attractions located in high-profit retail areas
and less frequent shows with higher capacities in attrac-
tions located in low-profit retail areas. In effect, this allo-
cation of capacity and schedules ensures that visitors make
more frequent visits to the high-profit areas and less fre-
quent trips to low-profit areas, which, in turn, improves
the potential to generate larger total store profits. In addi-
tion, a lowered operating capacity results in longer waiting
lines, offering opportunities for some members of families
waiting in line to explore the high-profit stores associated
with the attraction. We also found that the solution pro-
vided by the heuristic suggests a more staggered closing
of the park, in which attractions at lower-profit retail areas
close a few hours before attractions at the higher-profit
retail areas. Increasing the capacity of people in the attrac-
tions in lower-profit areas permits such staggered sched-
ules, which ultimately draws visitors to these high-profit
areas.

We also used this heuristic to assess the impact of the
changes in schedules and capacities of rides in visitor flow
patterns and store profits. It is also being used to under-
stand the benefits of capacity expansion and of changes to
schedules at major attractions, and to evaluate the impact
of new attractions and stores in the park on visitor flows
and store profits. In addition, the solution to this model
identifies corridors with a consistently high volume of vis-
itor flows. This analysis provides guidance to locate carts,
kiosks, and walking salespeople to further increase retail
profits.

As noted by the third finding of our field study, the mer-
chandising process at a store influences store profits and
the conversion efficiency ratio could be used as a basis
to identify stores with merchandise selection and stock-
ing problems. Our current research focuses on developing
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and implementing models that choose merchandise and its
stock levels to maximize profits at these stores. The results
of this research will be reported in a follow-up paper.

In conclusion, we believe the model presented in this
paper addresses an important problem in the theme park
industry. In addition, it can be used to design and evaluate
a range of strategies based on interfacing park operations
with store-level merchandising. Such strategies could play
an important role in increasing profitability across different
types of theme parks.
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