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We derive and test an alternative closed-form general equilibrium model of the term structure
within the Cox, Ingersoll, and Ross theoretical framework in which yields are nonlinear functions
of the risk-free rate. We show that equilibrium bond prices and the risk-free rate are not always
inversely related and that bond risk need not be strictly increasing in maturity. Using Hansen’s
generalized method of moments to obtain parameter estimates, this nonlinear model outperforms
the Cox, Ingersoll, and Ross square root model in describing actual Treasury bill yields for the
1964~1986 period.

1. Introduction

Modeling the term structure of interest rates has always been of fundamen-
tal importance to both financial economists and practitioners. In a recent
paper, Cox; Ingersoll, and Ross (CIR) (1985a) develop a simple and intuitive
general equilibrium framework for the pricing of discount bonds (the term
structure) and other contingent claims in a continuous-time economy. An
advantage of the CIR framework over partial equilibrium approaches' is that
the risk-free rate and its dynamics are determined endogenously as part of the
general equilibrium. Thus, interest-rate dynamics that permit arbitrage are
precluded, a property that cannot always be guaranteed in a partial equilib-
rium setting. ’

In a companion paper, CIR (1985b) provide a specific example of their
framework by deriving a closed-form model of the term structure in a simple
one-state-variable linear production economy. Although innovative, this model
[which we designate the square root (SR) model] does not capture fully the
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Ed Kane, Tony Sanders, René Stulz, and finance workshop participants at the University of lowa,
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(1987).
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observed properties of the term structure. For example, it implies that term
premiums are monotone increasing functions of maturity. Recent evidence in
Fama (1984) and McCulloch (1987), however, suggests that actual term
premiums have a humped pattern. In addition, the SR model allows only two
types of yield curves (monotone or humped); observed yield curves frequently
display more complicated patterns.

Clearly, we would like to be able to avoid these limitations while retaining
the advantages and intuitive appeal of the CIR (1985a) general equilibrium
approach to modeling the term structure. One possible way to do this is to
introduce additional state variables into the analysis. Unfortunately, however,
this approach is very costly in terms of- tractability and the numbers of
additional parameters that must be estimated.

This paper introduces a simpler and more direct way of addressing these
limitations. By allowing technological change to affect production returns
nonlinearly, we derive an alternative closed-form general equilibrium model of
the term structure within the CIR (1985a) framework in which discount bond
ylelds are nonlinear functions of the risk-free interest rate. This nonlinear
dependence results in a richer set of yield curve and term premium shapes
without introducing additional state variables or parameters. For example, this
model [designated the double square root (DSR) model] is consistent with
both humps and troughs in the yield curve as well as with monotone or
humped patterns of term premiums.

Several new and surprising findings emerge from this nonlinear model. For
example, we show that equilibrium discount bond prices and interest rates are
not always inversely related; that discount bond prices can be increasing
functions of the risk-free rate in some situations. This property has important
implications for the invertibility of bond prices. In addition, we show that
discount bond riskiness need not be a monotone increasing function of
maturity or duration. Finally, we show that the local expectations hypothesis
[CIR (1981)] can hold simultaneously for some bonds and not others.

To compare the empirical performance of the SR and DSR models in
describing the term structure, we first use Hansen’s (1982) generalized method
of moments (GMM) technique to obtain point estimates of the parameters of
the two models. We then compare the yields implied by each model with the
actual yields on Treasury bills during the 1964-1986 period. We show that the
DSR model has a lower root mean squared error than the SR model. In
addition, the errors from the SR model are more serially correlated and more
strongly related to the level of the risk-free rate. Finally, we test the yield
nonlinearity property directly by examining whether changes in the square
root of the interest rate explain yield changes after controlling for changes in
the level of the risk-free rate. The results strongly support the hypothesis that
yields are nonlinear functions of the risk-free rate, as implied by the model.
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Section 2 begins by reviewing the basic CIR (1985a,b) framework and
describing the alternative assumptions made in the DSR model. We assume
that the state variable behaves as a random walk (with drift) over short
periods, yet has a long-run steady-state distribution. This is consistent with the
actual behavior of a number of economic variables [see Fama and French
(1988)]. Following CIR (1985b), we derive the dynamics, conditional distribu-
tion, and unconditional distribution for the equilibrium interest rate. In
section 3, we derive the equilibrium pricing function for discount bonds in the
DSR model and present several examples of the types of yield curves and term
premium patterns implied by the model. Section 4 discusses the GMM
parameter estimation technique and presents the empirical results. Section 5
summarizes the major results of the paper and presents concluding remarks.

2. The double square root interest-rate model

In this section, we use the general equilibrium framework of CIR (1985a) to
derive an explicit model of bond pricing and the term structure of interest
rates. This model complements the SR model derived by CIR (1985b), which
is also developed within the CIR (1985a) theoretical framework. Both models
are rational expectation general equilibrium models in which the interest rate,
interest-rate dynamics, bond prices, and bond-price dynamics are endogenous.

The CIR (1985a) general equilibrium framework can be summarized as
follows. There is a finite number of constant stochastic returns to scale
production technologies that produce a single good that can be allocated to
either consumption or investment. There is also a fixed number of identical
individuals who maximize a time-additive expected utility of consumption
function by selecting optimal consumption and investment policies. For sim-
plicity, all investment is done by firms and the individuals invest all of their
unconsumed wealth in the shares of those firms. The values of the firms follow
a multivariate diffusion process. Random technological change is introduced
by allowing the drift vector and covariance matrix for this multivariate
diffusion process to depend on a vector of state variables that is also governed
by a multivariate diffusion process. The joint process for the firm values and
the state variables completely describes the state of the system. There are
perfect competitive markets for continuous trading in the firms’ shares and a
variety of contingent claims, as well as for instantaneous risk-free borrowing
and lending. Equilibrium in this economy gives the market-clearing interest
rate, prices for the contingent claims, and the total production and consump-
tion plans. —

To derive an explicit model of the term structure of interest rates from this
framework, CIR (1985b) require some specific additional assumptions about
production opportunities and preferences. For example, they assume that the
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representative investor has logarithmic preferences and that the single state
variable governing changes in production and investment opportunities over
time follows a square root process.

In deriving an alternative closed-form model for the term structure within
the CIR (1985a) framework, we retain some of these additional assumptions,
in particular, the assumption that the representative investor’s preferences are
logarithmic. As shown by Merton (1971), this assumption implies a convenient
separability property for the derived utility of wealth function which simplifies
the solution of the consumption and investment problem. In addition, we
retain the assumption that technological change is governed by a single state
variable, which we designate X.

Instead of assuming that X follows a square root process, however, we
assume it follows a process that behaves locally as a random walk (with drift)
but also has a long-run stationary distribution. These state-variable dynamics
are intuitively reasonable and are consistent with the behavior of a variety of
economic variables. For example, (log) stock prices resemble random walks
with drift over short periods [see Fama (1976)], yet appear to have long-run
stationary components as well [Fama and French (1988)]. Specifically, we
assume that X is governed by the following stochastic differential equation
(when X > 0):

dX=mdt+sdZ, (1)

where m and s are constants, m <0, and Z is a standard Wiener process in
R'. When X reaches zero, the process returns immediately to positive values.
This process is known as the reflected Brownian motion process® (with drift)
and implies that the state variable is nonnegative and has the long-run
stationary distribution

(—2m/s*)exp(2mX/s*),  X>0, (2)

which is the exponential density with mean —s52/2m and variance s*/4m?>,

Finally, as in CIR (1985b), we assume that the means and variances of
production returns are proportional. Rather than requiring them to be propor-
tional to X (the linear case), however, we allow them to be proportional to the
nonlinear term X2 As shown by Sundaresan (1984), allowing technology to be
nonlinear (for example, Cobb—Douglas) not only broadens the class of tech-
nologies available, but has the effect of inducing mean reversion in the
equilibrium interest rate. This property is instrumental in developing a parsi-
monious model of the term structure.

*See Karlin and Taylor (1975, ch. 7) and Cox and Miller (1970, ch. 5) for a description of this
process.



F.A. Longstaff, A nonlinear model of the term structure 199

With these assumptions about production and the state-variable dynamics,
we solve for the endogenous equilibrium interest rate. Because means and
variances are proportional and preferences are logarithmic, optimal investment
in each production process, optimal per capita consumption, and the represen-
tative investor’s derived utility of wealth function are of the same form’ as
given in CIR (1985b). Thus the equilibrium interest rate is equal to the
expected return on the market (optimally invested wealth) minus the variance
of the market’s return. Because market weights are constant, however, the
expected return and variance of the market are proportional to X2 Conse-
quently,

r=cX?, (3)

where r is the instantaneous risk-free rate and ¢ is a constant (assumed
positive).

Applying Ito’s Lemma to (3) gives the dynamics of the equilibrium interest
rate,

dr=(cs?+2mycyr)de +2s/cyr dZ, (4)

which can be rewritten as
drzx(p—\/;)dt+c\/;dz, k (%)

where «,6 >0 and p=02/4x > 0. This interest-rate process is similar to the
SR process derived by CIR (1985b) and to the processes assumed by Vasicek
(1977) and Brennan and Schwartz (1977), because the stochastic interest rate is
elastically drawn toward a central value. The restoring force in (5) is propor-
tional to p— vr, however, rather than to p—r, as in the other models of
interest-rate dynamics. This nonlinear restoring force has many implications
for the behavior of interest rates and bond prices that are discussed below. An
analysis of the boundary behavior of the process indicates that the origin is a
regular (attainable) boundary when k,¢?>0. On the other hand, oo is a
natural (Feller) boundary that cannot be reached in finite time.* Because vr

*The representative investor’s derived utility of wealth function is of the form J(W, X, ) =
A()In(W) + £( X, 1), where W represents wealth. This in turn implies optimal consumption of the
form B(:)W. Finally, as in CIR (1985b), market clearing implies that the vector of optimal
weights can be expressed as

1-13"la
S 1o+ —3" B |
s
which is constant, since both the vector of expected returns aX* and the covariance matrix of
returns £ X? are proportional to X? (a and ¥ are constant), Jy /iy does not depend on A4(1)
because of the functional form of J. Thus, as in CIR (1985b), the utility discount parameter p
does not affect the equilibrium interest rate, which depends on J only through J,;./;,,..

*The boundary behavior is determined by the values of four functionals related to the speed
and scale measures of the process. See Karlin and Taylor (1981, ch, 15).

-
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appears twice in (5), we designate this the double square root (DSR) interest-
rate process.

The DSR process shares many of the empirically relevaxit'properties of the
CIR SR process:

(1) The singularity of the diffusion coefficient at r = 0 implies that negative
interest rates are precluded.

(2) Because p >0, the interest rate returns to positive values if it reaches
zero.

(3) The instantaneous variance of the interest-rate process is 62r; the instan-
taneous variance is directly related to the level of the interest rate.

(4) The interest rate has a stationary or steady-state distribution.

The DSR process also has the following interesting characteristics:

(5) Only two parameters are required to describe interest-rate dynamics,
and o2

This follows because p? (the value toward which the interest rate reverts) is a
function of the other two parameters, p’=0%/16x% This means that the
long-run fundamental interest rate cannot be specified independently of the
parameters k and o2 if o2 is higher in some regime, then (ceteris paribus)
the mean interest rate is also higher, and vice versa.

(6) The rate at which the interest rate reverts towards p? is asymmetric;
interest rates are sticky downward. )

This property arises because the drift of the process is proportional to u ~ V7.
When Vr < p (r < p?), the drift is upward; when vVr > p (r> p?), the drift is
downward. However, the drift is not as large (in absolute terms) when the
interest rate is p®+ ¢ as when it is p? — e. This asymmetry causes the interest
rate to revert to p? more slowly from above than from below.
- The density of the interest rate at time ¢, r,, conditional on its current value
r, is obtained from the density of the square of a reflected Brownian motion,’

~2(fr, =V + m/2)2)

ot

(2mr0%) ™ exp(

+exp( 4':5; )exp( —2(\/;: +o\/2i + Kt/2) )
2k —dkr, 2\fr, +Vr —xt/2
s | — )) | ©

>The density of a reflected Brownian motion (with drift) is given in Cox and Miller (1970).
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where ¢(-) is the cumulative standard pormal distribution function. This
expression implies that the conditional distribution of future interest rates is
slightly skewed toward large values. The conditional moments of (6) are
difficult to obtain in closed form. Simulations suggest, however, that both the
conditional mean and the conditional variance are approximately linear in 7.
In the special case® where k =0 (m = 0), the interest rate is proportional to a
noncentral x2 variate’ and has conditional mean

E[r|r]=r+c%/4 (7)
and conditional variance .
var[r,|r] =02(rt+02t2/8), (8)

where both conditional moments are linear in r.
In the general case (x > 0), the distribution of the interest rate approaches a
steady-state density as ¢ — co. The stationary density is
2K —4r/r ©)
ex .
o2/ L

This is the Weibull® distribution with mean o*/8x? and variance 50°/64«x*.
Because interest rates are sticky downward, the long-run mean value of the
interest rate is 2p%; the drift or expected change in the rate can be negative
even when the rate is below its long-run mean.

3. The double square root model of the term structure

‘We now derive the equilibrium price of a discount bond that pays one dollar
at maturity. Because the state-variable and interest-rate dynamics are time-
homogeneous, it is convenient to designate the current time as 0 and the
payoff date of the bond as r, which is the maturity of the bond as well.

Following CIR (1985b) [but using the state-variable dynamics in (1)], the
fundamental valuation equation’® for the discount bond F(X, 1) is

2

s
5 v+ (m—AX)Fy—rF—F,=0, (10)

with the initial condition F(X,0) =1 and where X is a constant! representing
the market price of state-variable X risk. Because X > 0, however, the interest

°In this special case, the state variable follows a one-dimensional Bessel process. This is also
known as radial Brownian motion or as a folded normal. See Karlin and Taylor (1975) and Leone,
‘Nelson, and Nottingham (1961).

"See Johnson and Kotz (1970, ch. 28).

#See Johnson and Kotz (1970, ch. 20) for a description of the Weibull distribution and its
properties.

°See CIR (1985a) for the definition of the fundamental valuation equation.

%s in CIR (1985b), the risk premium term AX represents the covariance of returns on
optimally invested wealth with changes in the state variable. The instantaneous standard deviation
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rate is a monotone, and therefore invertible, function of X. As do CIR
(1985b), we use this property to make a change in variables from X to r,
yielding the following transformed fundamental valuation equation for the
price of a discount bond P(r, 7) [where P(r, )= F(X, 7)]:

62 o2

7rP,,+(?—x\/;—2)\r)P,——rP~PT=O, (11)
with the initial condition P(r,0)= 1. By inspection of (11), the instantaneous
expected return on a discount bond is r+ 2ArP,/P; as in the CIR SR model,
the instantaneous expected return is proportional to the bond’s interest-rate
elasticity. If A is negative, then P, < 0 implies positive term premiums.

A standard separation of variables approach gives the following equilibrium
bond pricing function as the solution to (11):

P(r,7)=A(7)exp(B(7)r+ C(r)r), (12)
where
1-¢, \'2 3+ ce??
A(T)=(1_:c~0—e?) exp cl+c2fr+-—1—_—cogy—7- ,
B(r)= o 4
o 0(1 —cpe™)
2(2h +v)(1 - er/2)?
()= y02(1 — ¢4e™") ’
with
y=Vax 1202,

co=02A+7v)/(2A-7),
.2

K
o= s+ -),

2A+y - «?
C2= 4 '—2,
4* 5 )
€y = 7302(2>\ —0?),
—8Ak?

Cy= ?’2—(2}\4"}')

of returns on wealth is proportional to X, whereas the instantaneous standard deviation of
changes in the state variable is constant. Together this implies that the covariance between retiirns
and changes in the state variable is proportional to X, where X is the constant of proportionality.
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Thus discount bond prices are functions of the two variables » and = and
depend parametrically on the constants k, 6%, and A. The solution not only
satisfies the initial condition P(r,0)= 1, but implies economically reasonable
bond prices as 7, 7 — oo; the equilibrium bond pricing function satisfies the
transversality conditions P(r,7) >0 as 7 co and P(r,7) >0 as r = 0.

The most striking feature of the bond price is its nonlinear dependence on
the interest rate; the yield to maturity of P(r,) is nonlinear in r. This
property makes (12) unique as a closed-form solution for bond prices; the
Merton (1973), Vasicek (1977), Richard (1978), Langetieg (1980), CIR (1985b),
Oldfield and Rogalski (1987), and Heath, Jarrow, and -Morton (1987) models
all imply yields that are linear in r. The nonlinearity of yields in the risk-free
rate is a directly testable empirical implication of the DSR model and will be
examined in section 4.

The yield nonlinearity gives the equilibrium bond pricing function a number
of interesting properties. For example, an increase in the interest rate need not
always result in a decrease in the bond price; P, is not uniformly negative. The
intuition of this surprising result can be understood best by the following
heuristic argument. Consider the properties of the risk-free rate as r — 0.
From (5), changes in the risk-free rate are deterministic in the limit. Further-
more, the drift of the process is positive if u > 0. Thus, an increase in r over
the next instant becomes a certainty when r=0. If P, <0, then, ceteris
paribus, a loss to the bondholder over the next instant is guaranteed, which is
not consistent with equilibrium in the contingent claims market.

In actuality, P, is not the sole determinant of the expected return on the
bond; by Ito’s Lemma, P,, and P, are also related to the expected returns.
This argument illustrates, however, that imposing the restriction P, <0 may
not be consistent with equilibrium bond pricing. As » — 0, P> 0 is necessary
for the bond to have an equilibrium expected rate of return; at r =0, the
expected return on the bond equals the risk-free rate.

By partial differentiation, we find that P, is negative or positive as r is
greater than or less than

k(1 - e”/z)‘i/ﬁ(e” - 1)2, (13)

which is generally a small value. Because the partial derivative of the equilib-
rium bond price with respect to r changes sign in the DSR model, however,
the bond price is not a globally invertible function of the interest rate. This
demonstrates that the commonly used technique of inverting bond prices!! to
solve for the state variables may not result in unique solutions for some

Uror example, see Brennan and Schwartz (1979) and CIR (1985b).
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equilibria. Partial differentiation also shows that bond prices are concave
functions of the interest rate for small r, but become convex functions for
larger values of .r.

Straightforward computations show that P, <0 for all » and . This means
that forward rates in the DSR model have the empirically realistic property of
being uniformly positive. This property is shared by the CIR SR model, but
some partial equilibrium models such as Merton (1973) and Ho and Lee
(1986) [see Heath, Jarrow, and Morton (1987)] can imply negative forward
rates.

The partial derivatives P, and P,» can each take on positive or negative
values. Intuitively, this.is possible because changes in x and 62 not only are
changes in the speed of adjustment and the variance of the interest-rate
process, but also affect the long-term average interest rate. Thus, changes in «
and 62 may have very complicated effects on bond pricing. Finally, the partial
derivative P, is also ambiguous in sign. As we show later, this follows because
term premiums for discount bonds are not necessarily monotone functions of
maturity in the nonlinear DSR model.

From (12), the yield to maturity of a discount bond is

_Tl(lnA('r)+B(T)r+ C(r)Vr), (14)

which, as discussed earlier, is nonlinear in r. Because of this nonlinearity, the
DSR model can lead to more complex and realistic yield curve shapes than
term-structure models implying linear yields. To illustrate this, consider the
CIR SR model, which uses three parameters to describe interest-rate move-
ments and implies linear yields. CIR (1985b) show that the SR model can
imply either a monotone or a humped yield curve, depending on parameter
values. Fig. 1 shows, however, that the DSR model can be consistent with
monotone term structures, term structures that increase, level out, then in-
crease again, humped term structures, and term structures that have both a
hump and a trough. Thus, the DSR model implies a richer and more realistic
set of term-structure shapes.

Using 'Hopital’s rule, we can show that the yield to maturity on a discount
bond converges to » as 7 — 0. As in the CIR SR model, the yield to maturity
in the DSR model converges to a fixed value,

K2/vP+ (Y=21) /4> 0, (15)

as 7 — oo, which is independent of the current interest rate. This is consistent
with the well-known flattening of the yield curve for long-maturity bonds; if
yields are determined by the risk-free rate r and there is a limiting yield to
maturity as 7 — oo, then in the SR and DSR models the yields on long-term
bonds should be less volatile over time than the yields on short-term bonds.
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To illustrate this, we compute the standard deviation of month-to-month
changes in the yields to maturity for one-month and twenty-year zero coupon
Treasury securities for the May 1973-February 1987 period. The data are
obtained from appendix II of Shiller and McCulloch (1987). The standard
deviation of monthly yield changes for the one-month securities is 0.956%,
whereas the same measure for the twenty-year securities is 0.383%. Thus,
changes in the yields of the twenty-year securities are only about 40% as
variable as those of the one-month securities. This order of magnitude is
completely consistent with both the CIR SR model and the DSR model.

Applying Ito’s Lemma to (12) gives the stochastic differential equation
governing discount bond price dynamics,

dP/P=(r+2X(B(r)r+ C(r)Vr /2))dt
+(B(r)Vr + C(7)/2)0dZ. (16)

From (16), the instantaneous expected return on a discount bond converges to
r as 7 — 0. Furthermore, as r — 0, the expected return also converges to zero.

Term premiums for discount bonds (expected returns minus r) in the DSR
model are

IN(B(7)r+ C(r)Vr /2). (17)

Thus, term premiums depend on both = and r; conditional term premiums
need not equal unconditional premiums. Interestingly, term premiums in the
DSR model need not be monotone increasing in 7. Fig. 2 shows that term
premiums can either be monotone increasing or have a hump. Thus the
DSR model is consistent with the results of Fama (1984), who finds that both
ex ante and ex post premiums for Treasury bills have a hump at maturities of
approximately nine months.!? In contrast, the CIR SR model implies only
term premiums that are monotone increasing in maturity. Fig. 2 also shows
that term premiums in the DSR model, although positive for small 7, can
actually become negative for larger 7. As 7— co, the term premium ap-
proaches the limit

M‘/;(‘/;_,‘/y)v (18)

02

which is greater than or less than zero if r is greater than or less than «2/y2
Negative term premiums will occur if and only if « > ywr . If this condition is
satisfied, it is straightforward to show that the instantaneous expected return

2 However, see McCulloch (1987).
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for the bond with maturity

. 21 K+y\/7
= —n| ———==
! K= yWr

v
is equal to r. Consequently, when k> yvr, the local expectations hypothesis
[see CIR (1981)] holds for the bond with maturity r*. This is consistent with
market equilibrium, however, since from (16) the bond with maturity r* is
locally risk-free; the diffusion term (B (7)Wr + C(7)/2)0 is zero for 7= 0 and
7= ¢*, Thus locally risk-free bonds have expected returns equal to the risk-free
rate in the DSR model.® Substituting r* for = in (16) gives the following
dynamics for the bond with maturity 7¥:

dP/P=rdt. (20)

(19)

Thus, if an investor were to follow a portfolio strategy of holding the +*
maturity bond, the return on the portfolio would be the same as if the investor
rolled over instantaneously maturing bonds; the portfolio of the 7* maturity
bonds is immunized against basis risk in the sense of CIR (1980) and
Ramaswamy and Sundaresan (1986).

Finally, the instantaneous variance of the bond returns is

o?(B(r)r+ B(r)C(1)Vr + C¥(1)/4). (21)

"“*The converse is not true. When r =0, the expected return on all bonds also equals zero, but
the bonds may not be locally risk-free [the diffusion term in (16) nced not equal zero when = 0],
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Fig. 3. Example of a nonmonotonic relation between discount bond return variance and maturity

(duration) implied b;r the double square root term structure model assuming parameter values

r=0.03, k=0.02, ¢*=0.015, and A= —0.01.  r denotes the per annum instantaneous risk-free

rate, x and o? are parameters governing the evolution of the instantaneous risk-free rate in the

double square root model, and A represents the market price of interest-rate risk. Returns are per
annum and maturity is measured in years.

Because of the yield nonlinearity, the relation between the risk of bond returns
and bond maturityl“ (duration) can be monotone increasing or can display
more complicated patterns such as that shown in fig. 3.

4. An empirical comparison of the square root and double square root models

In this section, we compare the performance of the CIR (1985b) SR model
with that of the DSR model in describing the actual yields on U.S. Treasury
bills. After estimating the parameters of both models using Hansen’s (1982)
GMM technique, we compare the yields implied by the two models directly
with observed Treasury bill yields. Finally, we test the yield nonlinearity
property of the DSR model directly by examining whether changes in the
square root of the risk-free rate explain significantly more about Treasury bill
yield changes after controlling for changes.in the level of the risk-free rate.

Schaefer and Schwartz (1987) examine the relation between the standard deviation of returns
on 87 UK. government bonds and the duration of the bonds. Their evidence shows a strong
monotone increasing relation between the two variables. They find the relation to be less strong,
however, for low coupon bonds.
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4.1. GMM parameter estimates

In general, estimating the parameters of continuous-time models from
discretely sampled data is difficult and requires extensive computation. Be-
cause both the SR and the DSR models imply that the risk-free rate has a
long-run stationary distribution, however, their parameters can be estimated
directly by a simple application of the GMM technique. This approach
consists of deriving analytical expressions for the unconditional expected
yields of Treasury bills, setting these expressions equal to their sample coun-
terparts, and then solving the resulting system of moment equations for the
parameters’ implied point estimates. In applying this technique, we use as
many sample moments as parameters, which allows the parameter estimates to
be uniquely determined. Note the similarity of this approach to that used in
obtaining implied variance estimates from option prices; the main distinction
is that we fit first moments instead of prices.

This empirical method has a number of advantages in estimating the
parameters of the continuous-time interest-rate process. For example, the
GMM approach uses the actual distribution of the temporally aggregated
interest-rate process, unlike conventional approaches,!® which often use a
discrete-time approximation. In addition, the parameter estimates are unaf-
fected by conditional heteroskedasticity and are robust to some forms of
measurement error.'® Finally, and perhaps most importantly, the technique is
intuitive and easy to apply.

The equilibrium discount bond price in the CIR (1985b) SR model depends
on the three interest-rate parameters &, p, and o2, as well as the market price
of risk A (these parameters need not have the same values as in the DSR
model). To identify these four parameters, we first need to find four distinct
moment equations, which can then be solved for the parameter values. From

CIR (1985b, egs. (19), (23), (25)), the expected yield for a v maturity Treasury
bill is

1
~(~ln () + B(r)n), (22)
where
2,Ye(x+}\+y)'r/2 2np/0?
A(T) = )
(vy+r+A)(e"—1)+2y
2(e—1)

B

~

(Al ST g

V(k+2)*+ 262,

BSror example, see Brennan and Schwartz (1980).
"This feature is discussed by Gibbons and Ramaswamy (1986).

o

y
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Taking 7 to be the two-, three-, four-, and five-month'” Treasury bills and
setting the average yield for these maturities equal to the corresponding
expressions from (22) gives a system of four equations that can be solved for
the four unknowns k, x, 02, and A.

Equilibrium discount bond prices in the DSR model depend on the two
interest-rate parameters k and ¢? and on the market price of risk A. Thus,
three distinct moment equations are required to identify the model’s parame-
ters. Using the results in section 2 and the expression for yields in (14), it is
readily shown that expected yields in the DSR model is given by

-—_;_-1—(lnA('r)+B('r)a4/8x2+C(7)02/4x). (23)

Taking 7 to be the three-, four-, and five-month Treasury bills'® and setting
the average yields for these maturities equal to the corresponding expression in
(23) now gives a system of three equations that can be solved for the three
parameters k, ¢2, and A.

Table 1 presents the GMM parameter estimates for the two models using
monthly yield data for the June 1964-December 1986 period. The yields are
obtained from the data set originally constructed by Fama (1984) and subse-"
quently updated by the Center for Research in Security Prices (CRSP). These
yields are based on the average of bid and ask prices for Treasury bills and are
normalized to reflect a standard month of 30.4 days. All parameter estimates
are annualized. Asymptotic standard errors for the parameter estimates are
reported in parentheses and are computed from the positive definite Newey
and West (1987) estimator of the covariance matrix of the moment equations
[equivalent to the covariance matrix of the yields because of the linear
structure of the moment equations as well as the separability of the data and
the parameters — see Gibbons and Ramaswamy (1986)] and from the Jacobian
matrix of the moments with respect to the parameters [see Hansen (1982) and
Hansen and Singleton (1982)]. :

Although difficult to compare directly, the parameter estimates for the SR
process in table 1 appear to be somewhat different from those estimated by
Marsh and Rosenfeld (1983) or Dybvig and Brown (1986). Table 1 indicates
that the GMM estimate of o2 is positive, in contrast to some of the estimates
of the same parameter obtained by Brown and Dybvig (1986). The standard
errors of the DSR model’s parameters are somewhat large in relation to the
point estimates, but this can be attributed mainly to the high correlation of the
parameters with each other (> 0.98) rather than to any uncertainty about

7We use the one-month Treasury bill yield as a proxy for the short-term interest rate.

'“The parameters were also estimated using the two-, three-, and four-month maturity viclds.
The resulting parameter estimates were very similar to those reported.
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Table 1

Generalized method of moments estimates® of the parameters for the square root and double
square root term-structure models using average yield to maturity data for- two- to five-month
Treasury bills from June 1964 to December 1986 (259 observations®).

Square root model

Parameter® K ® o2 by

Point estimate 1,360 0.06660 0.00044 —0.487

Standard errord 0.062 0.102 ) 0.00075 0.011
Double square root model

Parameter K o? A

Point estimate. 0.00414 0.00306 -0.141

Standard error® 0.024 0.017 0.383

?The point estimates of the parameters are obtained as the implied values that set the sample
means of the yields to maturity for two-, three-, four-, and five-month Treasury bills (three-, four-,
and five-month Treasury bills for the double square root model) equal to their corresponding
unconditional first moments.

Yield data are missing for a few months for some of the Treasury bills. As in Fama (1984),
these months are deleted for all maturities.

“The parameters &, p, o2, and A are the four parameters used in the Cox, Ingersoll, and Ross
(1985b) square root term structure model. Similarly, the parameters , o2, and A in the second
half of the table are the parameters used in the double square root term structure model. The
parameter values for the two models need not be the same.

The standard errors are computed using the Newey and West (1987) heteroskedasticity- and
autocorrelation-consistent estimate of the covariance matrix of the yields [which is identical to the
covariance matrix of the moment equations®because of the structure of the moment equations
(yields — mean yield)}.

“The larger standard errors for the double square root model are primarily due to the high
correlations among the individual parameters.

-the values of the point estimates. (The point estimates are the unique solutions
of the system of moment equations.) The probable effect of the larger standard
errors for the DSR model will be to bias the tests against the model.

4.2. Yield comparisons

With these parameter estimates it is now possible to compute theoretical
yields for longer-maturity U.S. Treasury bills from both the SR and the DSR
models. First, we compare the yields from the SR model directly with those of
the DSR model to- determine how different the models are in their pricing
implications. We then compare these theoretical yields with the actual yields
on U.S. Treasury bills'® with maturities of six to twelve months during the

"The risk-free rate and the parameter estimates are obtained from Treasury bills with
maturities of one to five months. Thus, comparing the yields implied by the two models for six- to
twelve-month Treasury bills provides an out-of-sample test. The lack of a sufficiently long time
series of data for longer-maturity discount bonds rules out tests using maturities beyond twelve
months. Coupon bond data are not appropriate for the tests because tax-trading-related options in
coupon bond prices could induce bias [see Constantinides and Ingersoll (1984)].
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Fig. 4. Difference between the yields implied by the Cox, Ingersoll, and Ross (1985b) square root

model and those implied by the double square root model for twelve-month Treasury bills for the

June 1964—-December 1986 period (monthly). The differences are expressed as basis points per
annum.

June 1964—December 1986 period to see which model best captures the
observed term structure. As before, vields to maturity for U.S. Treasury bills
are obtained from the data set originally used by Fama (1984).

Fig. 4 displays the difference between the yield to maturity of a twelve-month
Treasury bill implied by the SR model and the corresponding yield implied by
the DSR model. The differences between the two models can be quite large.
The average absolute difference during the study period is more than 112 basis
points, and differences of more than 250 basis points occurred several times
during 1980 and 1981. These simulation results demonstrate that the two
models have fundamentally different implications for the behavior of equilib-
rium discount bond prices. The yields implied by the DSR model are generally
less than those implied by the SR model from 1964 to 1978, but the relation is
reversed for the 1979-1985 period. Interestingly, the average difference in the
yields implied by the two models over the entire 1964-1986 study period is
only about 22 basis points.

Table 2 presents summary statistics for the differences between yields
implied by the two models and actual yields for six- to twelve-month Treasury
bills from June 1964 to December 1986. The DSR model appears to capture
the variation in the term structure better than the SR model; the root mean
squared error (RMSE) of the DSR model is uniformly less than the RMSE of
the SR model for all maturities. Decomposing the RMSE into its components



F.A. Longstaff, A nonlinear model of the term structure 215

Table 2

Summary statistics for the differences between theoretical yields and actual U.S. Treasury bill
yields (in basis points) using monthly data from June 1964 to December 1986 (259 observations® ).

Maturity in months

6 7 8 9 10 11 12
Square root model yield® — Actual yield
RMSE* 80.4 86.5 92.9 99.7 107.3 112.9 117.5
Mean 72 124 16.4 19.1 26.4 32.5 372
Std. dev. 80.1 85.6 91.4 97.9 104.0 108.1 111.5
Corr. with r -0.733 -0736 -0756 —-0770 -0.787 —0.800 —0.805
o 0.755 0.755 0.787 0.816 0.842 0.861 0.869
Double square root model yield®~Actual yield .

RMSE 58.6 62.9 66.0 69.8 2.7 76.5 81.9
Mean -158 —-11.6 -91 =60 14 8.3 14.6
Std. dev. 56.4 61.8 65.4 69.5 72.7 76.4 80.6
Corr. with r 0.259 0.348 0.400 0.438 0.470 0.521 0.571
P 0.260 0.266 0.313 0.377 0.417 0.465 0.510

?Yield data are missing for a few months for some of the Treasury bills. As in Fama (1984),
these months are deleted for all maturities.
The square root model and double square root model yields are computed using the one-month
Treasury bill rate as a proxy for the short-term interest rate.
“RMSE is the root mean squared error.
p represents the first-order autocorrelation.

shows that both the bias and the standard deviation of differences between
yields implied by the DSR model and actual yields (the errors) are markedly
less than the corresponding measures for the SR model.

Table 2 also gives the correlation between the two models’ errors and the
level of the risk-free rate. The SR model’s errors are strongly negatively related
to r; the correlations range from —0.733 for the six-month Treasury bill to
=0:805 for the twelve-month-bill: The DSR model’s errors are less correlated
with the risk-free rate, with correlations ranging from 0.259 for the six-month
Treasury bill to 0.571 for the twelve-month bill. These correlations provide
some intuition for the large differences between the two models shown in fig.
4. Since the SR model’s errors are negatively correlated with the risk-free rate
and the DSR model’s errors are positively correlated, the differences between
the two tend to be larger than the errors themselves. The correlation between
the two model’s errors and the risk-free rate may also provide a partial
explanation for the persistence of the errors over time. The first-order autocor-
relation coefficients for the SR model’s errors range from 0.755 for the
six-month Treasury bill to 0.869 for the twelve-month bill. Although the DSR
model’s errors are also autocorrelated, the first-order autocorrelation coeffi-
cients are only about one half as large as those for the SR model’s errors.
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Fig. 5. Difference between the yields implied by the Cox, Ingersoll, and Ross (1985b) square root
model and the actual yields on twelve-month U.S. Treasury bills for the June 1964-December
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Fig. 6. Difference between the yields implied by the double square root model and the actual
yields on twelve-month U.S. Treasury bills for the June 1964-December 1986 period (monthiy).
The differences are expressed as basis points per annum.
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To illustrate the behavior of the errors over time, fig. 5 plots the SR model’s
errors for the twelve-month Treasury bill for the 1964-1986 period and fig. 6
the DSR model’s errors. The SR model’s errors are quite variable, and the
degree of bias tends to vary appreciably over time. The DSR model’s errors
are less variable, and the bias appears to be fairly small and constant
throughout the period.

Neither model completely captures the level and variation of Treasury bill
yields during the study period. This is best seen by noting that the root mean
squared error of the models is related to maturity in table 2; the RMSE of the
DSR model increases by 39.8% as maturity doubles from six to twelve months
and the RMSE of the SR model increases by 46.1%. Extrapolating this trend
to longer maturities suggests that models that incorporate an additional
maturity-related factor [as in Brennan and Schwartz (1979)] could lead to an
improved description of long-maturity discount bond yields. Alternatively,
these trends indicate that the models perform best when the parameters are
estimated from data similar in maturity to the yields being modeled.

4.3. Empirical tests of yield nonlinearity

We now compare the two models’ success in capturing changes in Treasury
bill yields over time. Recall that the SR model (along with many others)
implies that yields are linear functions of the risk-free rate. Thus, changes in
yields are linearly related to changes in the risk-free rate. In contrast, the DSR
model implies that*yields depend on both r and V7, so yield changes are
linearly related to changes in both r and Vr. Consequently, the DSR model
can be tested simply by examining whether changes in V7 have incremental

“explanatory power for yield changes after controlling for the change in r.

The yield nonlinearity implies that the DSR model can be viewed as a
two-factor model of the term structure. This follows because yields are linear
functions of r and Vr in the DSR model and r and Vr are linearly %
independent. Together, these properties imply that two (linear) factors are
required to span the space of yields. Equivalently, the yield on a discount
bond can be expressed as a linear function of any other two bonds. Thus, the
DSR model has the potential to capture the multifactor®! nature of the term
structure while retaining the analytical tractability of a one-state-variable
model.

We designate the yield to maturity on a r-month Treasury bill at the end of
month ¢ as Y,,. Subtracting Y,,_, from Y,, gives the change in yield for a

*Two functions are linearly independent if their Wronskian is nonzero. The Wronskian of r
and yr is — Vr /2 # 0. See Birkhoff and Rota (1978) for a description of the Wronskian,

A For example, see Brennan and Schwartz (1980, 1982), Oldfield and Rogalski (1981), and
Stambaugh (1988).
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constant-maturity Treasury bill, AY,,. This involves two different 7-month
Treasury bills; we hold maturity (not Treasury bills) constant in computing -
the yield changes. Because of this, (14) implies that AY,, can be expressed as -

AY, = By + BiAr,+ BA[r, +e, (24)

where B,=0, B8, and B, are constants (because 7 is held constant), Ar,= -
r—=r_q Aﬁ = \/Z - ‘/;:: , and g is an error term. We include an error
term because of the possibility of measurement errors in Treasury bill prices
arising from quotation errors or from the averaging®® of bid and ask prices.
We assume that the error term is normally distributed with mean zero. Hence
(24) is a well-specified regression equation. We allow the residual ¢, to be
heteroskedastic. In addition, we permit the residuals to be either independent
over time or to follow an AR(1) process, and to be contemporaneously
correlated across the regression equations for Treasury bills of different
maturities. Test of whether yields are nonlinear in the risk-free rate can be
conducted simply as tests of the null hypothesis 8, = 0.

One advantage of this testing approach is that it does not require estimates
of the parameters k, 6%, and A. Thus, inferences about yield nonlinearity are
unaffected by any estimation error that might be present in the parameters
given in table 1. As a result, these tests provide a useful complement to the
comparisons of the previous section, which do depend on the parameter
estimates.

Table 3 presents summary statistics for the monthly changes in yields for
the six- to twelve-month Treasury bills for June 1?_64—Dccernber 1986,
AY;,, AY,,..., AY),,. Summary statistics for Az, and Ayr, are also presented.
The monthly changes in yields are approximately mean zero over the study
period. The yield changes for the six- to twelve-month Treasury bills are less
volatile than those for the one-month Treasury bill, again illustrating the
dampening of yield volatility with maturity. In addition, AY;, through AY},,
have a trace of positive first-order autocorrelation, whereas the opposite is true
for Ar, and A\/Z . This difference in the time-series properties of the yield
changes and Ar, is itself an indication that yields are not simple linear
functions of the risk-free rate. The last two columns of table 3 present the
pairwise (univariate) correlations between the yield changes and Ar, and A‘/}: .

The correlation of each yield spread with A\/rT is higher than the correlation

* Using first differences of yields eliminates most of the error arising from the averaging of bid
and ask prices; AY,, computed by averaging bid and ask prices is essentially the same as AY,,
computed using only bid prices or only ask prices. This is because the bid-ask spread is much less
variable than the bond prices and essentially acts as a constant in the differencing. See McCulloch
(1987).
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Table 3

Summary statistics for monthly changes in Treasury biil yields, the risk-free rate, and the square
root of the risk-free rate from June 1964 to December 1986 (258 observations?).

Corr.® Corr.?
Variable® Mean®  Std. dev® SR plr [ P3 Ar Ar
AY, 8.344 7.074 9.64 0.144 —-0.065 -—0.094 0.692 0.700
AY; 8386  '6.938 9.56 0.128° —0.036 ~—0.09% 0.630 0.645
AYy 8.334 6.880 9.63 0157 -0042 -0.130 0.619 0.632
AY, 8.199 6.988 10.09 0.161 -0.074 -0135 0.620 0.631
AY) 8.190 6.876 10.17 0.158 0069 —0.125 0.617 0.628
AYy 8.283 6.836 10.24 0163 —0.077 -0.119 0.624 0.633
AY), 8.041 6.885 10.35 0160 -0075 -0.119 0.622 0.632
Ar 6.586 8.849 1119 -0.126 0.057 ~-0.108 1.000 0.984
AVr 16.460 14.42 9.88  -0.085 0.051 -0.104 0.984 1.000

?Yield data are missing for a few months for some of the Treasury bills. As in Fama (1984), the
months are deleted for all maturities. Changes in the yields are computed over successive
observations.

AY, represents the monthly change in the 7-month Treasury bill yield. Ar represents the
monthly change in the risk-free rate and Ayr represents the monthly change in the square root of
the risk-free rate. All yields are continuously compounded, annualized, and expressed in decimal
form. :

“Multiplied by 100,000.

4 Multiplied by 1,000.

“Standardized range.

‘o, is the sample autocorrelation for lag i.

ERepresents the correlation of the indicated variable with Ar,

hRepresems the correlation of the indicated variable with Ay .

with Ar,, although the difference is small in absolute terms, ranging from 0.008
to 0.015.

The empirical tests are conducted by regressing the yield changes on the
contemporaneous changes in the risk-free rate and in the square root of the
risk-free rate in individual (univariate) regressions. We estimate the regressions
individually rather than in a multivariate framework such as Zellner’s (1962)
seemingly unrelated regression (SUR) model because each regression has the
same explanatory variables; ordinary least squares (OLS) and SUR yield
identical results in this situation.?

Table 4 presents the results of the regressions estimated by OLS (residuals
are assumed to be serially uncorrelated). The ¢-statistics (in parentheses) are
based on the White (1980) heteroskedasticity-consistent estimate of the covari-
ance matrix. The results in table 4 uniformly appear to support the yield
nonlinearity implications of the DSR model. The estimate of B, is significant
at the 0.05 level for five of the seven regressions estimated and at the 0.075

®See Tudge, Griffiths, Hill, Lutkepohl, and Lee (1985, ch. 2).
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Table 4

Ordinary least squares regression tests of yield nonlinearity using monthly changes in Treasury bill
yields from June 1964 to December 1986 (258 observations?).

‘AYJ.,=BO+BIA;-,+,BZA‘/Z te, j=6,7,...,120

Maturity
(months) By B B D.W. Adj. R?
6 0.0294 0.0743 0.2985 244 0.486
— (0.09)¢ (0.28) (2.13) .
7 0.0285 ~0.1267 0.3869 2.49 0.413
(0.09) (—0.47) (2.66)
8- 0.0316 —0.0651 0.3405 2.40 0.394 .
(0.10) (—0.23) (2.24) ‘
9 0.0304 ~0.0397 0.3297 2.33 0.394
(0.09) (—0.13) (2.05)
10 0.0316 -0.0322 0.3187 232 0.390
(0.09) (—0.11) (2.02)
11 0.0349 0.0415 0.2747 2.29 0.396
(0.10) (0.14) 1.79)
12 0.0314 0.0173 0.2910 2.29 0.394
(0.09) (0.06) (1.82)

*Yield data for some of the maturities are not available for a few of the months. As in Fama
(1984), these months are deleted for all maturities. Cha.nggs in the yields are based on successive
observations.

"AY,, is the change during month ¢ of the yield to maturity on j-month Treasury bills (holding
maturity and not bill constant). 47, is the change in the one-month Treasury bill rate during

month ¢ and A\/Z is the change in the square root of the one-month Treasury bill rate during
month 7.

“Multiplied by 1,000.
t-statistics in parentheses are based on the White (1980) heteroskedasticity-consistent estimate
of the covariance matrix.

level for all seven. The f-statistics for the B, estimates decline from 2.66 for the
seven-month Treasury bills to 1.79 for the eleven-month bills.

Surprisingly, the estimates of B, are never significantly different from zero,
and are all within one-half of a standard deviation from zero. This is not
necessarily evidence, however, that A\/;: subsumes Ar, in explaining yield
changes; the high correlation between the two variables may cause the z-statis-
tic for B, to appear smaller than would otherwise be the case. Finally, the
estimates of B, are all insignificantly different from zero, as expected. The
adjusted R? for the regressions ranges from about 0.49 for the six-month
Treasury bills to approximately 0.39 for the eight- to twelve-month bills.

Some of the Durbin—-Watson statistics for the regression (in particular,
those for the six-, seven-, and eight-month maturities) suggest a trace of
negative autocorrelation in the residuals. Since the standard errors of the
coefficient estimates could be biased in the presence of autocorrelation, we
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Table 5

Cochrane-Orcutt regression tests of yield nonlinearity using monthly changes in, Treasury bill
yields from June 1964 to December 1986 (258 observations®).

AY, =By + BAr+BAJr e, j=6.7,...120

Maturity )
(months) By B, 8, D.Ww. Adj. R?
6 0.0303 0.2261 0.2531 2.16 0.569
(0.10)¢ (0.99) (2.09
7 0.0265 0.0319 0.3472 219 0:522
(0.09) 0.13) (2.75)
8 0.0294 0.0575 0.3139 216 0.483
(0.10) 0.23) (2.28)
9 0.0309 0.0566 0.3094 213 0.461
(0.10) (0.20) (2.08)
10 0.0329 0.0524 0.3033 211 0.453
0.10) (0.19) (2.06)
11 0.0349 0.1104 0.2646 211 0.451
0.11) (0.41) (1.83)
12 0.0311 0.0906 0.2783 211 0.449
(0.09) 0.32) (1.84)

“Yield data for some of the maturities are not available for a few of the months. As in Fama
(1984), these months are deleted for all maturities. Changes in the yields are based on successive
observations.

hAY/r is the change during month ¢ of the yield to maturity on j-month Treasury bills (holding
maturity and not bill constant). Ar, is the change in the one-month Treasury bill rate during

month ¢ and A‘/rj is the change in the square root of the one-month Treasury bill rate during
month .

“Multiplied by 1,000.
f-statistics in parentheses are based on the White (1980) heteroskedasticity-consistent estimate
of the covariance matrix.

reestimate the regressions using the Cochrane-Orcutt [see Maddala (1977)]
procedure. The results from the Cochrane-Orcutt regressions are reported in
table 5. . -

These estimates also reject the null hypothesis that 8, = 0; the -statistics for
the B, estimates are slightly larger that their counterparts in table 4. This
illustrates that the bias in the standard error of the B, estimates arising from
the slight first-order autocorrelation of the OLS residuals is upward (in the
usual case of positively correlated residuals, the bias is often downward). The
estimates of B, are also very similar to those reported in table 4.

The estimates of B, are again insignificant but are all larger than the
estimates in table 4. Finally, the estimates of B, (obtained by transforming the
Cochrane-Orcutt residuals back to the original coordinate system) are all
insignificant and about two-thirds the value of their counterparts in table 4.
The adjusted R?s in table 5 are not strictly comparable to those in table 4. The
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adjusted R?s in table 5 decline monotonically from 0.569 for the six-month
Treasury bills to 0.449 for the twelve-month bills. The Durbin-Watson statis-
tics indicate that the Cochrane—Orcutt procedure is successful in purgmg the
residuals of first-order autocorrelation.

5. Conclusion

We derive an alternative general equilibrium model of the term structure of
interest rates within the Cox, Ingersoll, and Ross (1985a) framework. Because
- this model, which we call the DSR (double square root) model, has the unique
feature of implying that vields are nonlinear in the risk-free rate, it is able to
generalize many of the empirically relevant features of the SR (square root)
model. In addition, the yield nonlinearity leads to a number of new results
about the behavior of the term structure of equilibrium interest rates.

The empirical results appear to suggest that the DSR model has incremental
explanatory power. Using a GMM procedure, we estimate the parameters of
the SR and DSR models and show that the DSR model is more successful in
capturing the level and variation of six- to twelve-month Treasury bill yields
during the 1964-1986 period. In addition, regression tests suggest that yields
are nonlinearly related to the risk-free rate, as the model implies.

These theoretical and empirical results suggest that term structure models
that allow yield nonlinearity can provide additional insights and explanatory
power for the behavior of equilibrium interest rates. However, the bias in both
the SR and DSR models shows that the actual pricing of even intermediate-
term discount bonds may be more complex than can be accommodated within
the context of a single-state-variable model. Future work could explore dis-
count bond pricing when yields are nonlinear functions of several state
variables such as the real rate and the price level.
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