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Abstract

This paper presents a novel stylized fact and analyzes its contribution to the skill bias of technical
change in U.S. manufacturing. The share of skilled labor embedded in intermediate inputs correlates
strongly with the skill share employed in final production. This finding points towards an intersectoral
technology-skill complementarity (ITSC). Together with input-output linkages, the observed comple-
mentarity delivers a multiplier that reinforces skill demand along the production chain. Reduced-form
estimates suggest that the effect is quantitatively important, explaining about as much skill upgrading as
outsourcing. Empirical evidence suggests that one channel through which this complementarity works
is product innovation. I also analyze the importance of different drivers of skill upgrading over time.
While foreign outsourcing and IT capital is associated with skill demand particularly strongly from the
1980s onwards (a period of rapidly increasing skill premia), R&D contributed stably throughout the pe-
riod 1958-2005. The same is true for ITSC, which augmented within-sector skill bias in a stable fashion
throughout the last 5 decades.
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1 Introduction

As the supply of skilled workers has risen, so has the skill premium. A wealth of studies following Katz
and Murphy (1992) documents a substantial increase in the demand for skilled labor over the last decades.

Several channels have been proposed to explain this observation; most prominently, international trade and
information technology. Together, these account for less than one half of the observed rise in skill demand in

the U.S., leaving much to be explained. When quantifying contributions to rising skill demand, the literature
has focused on skill-biased technical change (SBTC) – a shift in production technologies that favors skilled

labor. Empirical studies have investigated SBTC at the worker-, firm-, and sector-level. Linkages across
sectors have been ignored so far, despite the fact that more than half of a final product’s value is embedded

in intermediates.
This paper shows that skill upgrading in one sector goes hand-in-hand with increasing skill demand in

many other sectors, because of linkages that operate through the use of intermediate products. I construct
a measure of input-embedded skills, matching input-output (I-O) tables with workforce data for detailed

U.S. manufacturing sectors over the period 1958 to 2005. Input skill intensity is defined as the weighted
average share of white-collar workers employed in the production of a sector’s intermediate inputs.1 Fig-

ure 1 presents a novel stylized fact: A strong positive correlation between input skill intensity and skills
employed in final production.2 I argue that this finding implies an intersectoral technology-skill comple-

mentarity (ITSC): Skills used in intermediate production are complementary to skills required in the further
processing of intermediates or their integration into redesigned final products. ITSC goes beyond the well-

known within-sector complementarity between skills and technology. In the empirical framework presented
here, inputs from upstream sectors are not only ’intermediate’ in the standard semi-manufactured sense,

but also ’intermediaries’ that transmit skill requirements across industries. This leads to a multiplier effect,
which augments any given within-sector SBTC to a larger aggregate impact on skill demand. To gauge the

magnitude of the effect, I introduce ITSC in the standard SBTC framework and estimate a reduced form.
The results suggest that ITSC is quantitatively important, with conservative parameter values explaining 5-

15% of the observed skill upgrading in U.S. manufacturing. This is the same order of magnitude as Feenstra
and Hanson (1999) find for outsourcing.

[Insert Figure 1 here]

The empirical analysis in this paper is based on U.S. input-output data, paired with workforce char-

acteristics from the NBER Manufacturing Industries Database at the detailed 4-digit SIC level. To these
variables I add a large number of controls that were previously proposed in the wage inequality literature:

1White-collar (or non-production) workers – including personnel engaged in supervision, installation and servicing, profes-
sional, technological, and administrative – have been widely used to proxy for skilled labor. See in particular Berman, Bound, and
Griliches (1994).

2The figure presents cross-sectional observations in the I-O benchmark year 1992. The correlation is very similar for any other
benchmark year (5-year intervals) between 1967 and 2002.
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Capital equipment, shares of computer and high-tech capital, R&D intensity, and outsourcing.3 The base-

line analysis uses annual data and finds that the correlation between input skill intensity and skills in final
production is stable over time and robust to the inclusion of the various controls and fixed effects. I also ex-

clude inputs from broadly similar industries in the calculation of input skill intensity in order to address the
concern that common trends at the aggregate industry level drive the observed correlation. In a similar vain,

excluding electronic computer parts from intermediate inputs does not change my findings. In addition, my
results hold when restricting the analysis to I-O benchmark years – 5-year intervals between 1967 and 2002.

The sample covers two periods. First, one of a relatively constant skill premium between the 1950s and
70s; second, a period of rapidly rising wage inequality, throughout the 1980s, 90s, and early 2000s (c.f.

Appendix A.1, and Goldin and Katz, 2007, 2009). Interestingly, the magnitude of ITSC does not change
between the two periods. The same holds for the contribution of R&D intensity to skill upgrading (defined

as a rise in skilled labor’s share in employment and payroll). On the other hand, IT capital and outsourcing
have become more important determinants of skill demand in the second period.

The paper examines one potential channel through which ITSC works: Skill-specific spillovers via
product innovation. Skilled workers are not merely more productive, but are also good innovators, adapt

better to technological change, and speed the process of technological diffusion (Nelson and Phelps, 1966;
Bartel and Lichtenberg, 1987; Goldin and Katz, 1998; Doms, Dunne, and Troske, 1997). Because of this,

an upstream supplier that employs highly educated workers will turn out innovative intermediates. These
upstream product improvements induce innovation at the downstream level, which in turn increases down-

stream skill demand.4 Equally, a cutting-edge downstream firm demands innovative intermediate inputs.
To supply these, upstream producers need highly skilled workers. Thus, whether innovation originates

upstream or downstream is not crucial for my complementarity argument. One example for the product in-
novation channel is the invention and improvement of the transistor, which affected skill demand within and

outside its sector of origin, the electronic components industry. Within this industry, the transistor enabled
the production of more refined electronic parts, engineered by highly skilled workers. These innovative

electronic components eventually became fundamental intermediate inputs for a large variety of other sec-
tors, including computers, communication equipment, and controlling devices, where their integration went

hand-in-hand with skill upgrading.
While the paper does not offer a direct proof that ITSC works through product innovation, I provide

evidence that is consistent with this claim. The argument is based on the relationship between product in-
novation and differentiation. Differentiated goods can be refined more readily than homogeneous ones. For

example, the presence of engineers contributes to the continuous improvement of electronic components.

On the other hand, crude petroleum does not change, whether it is pumped out of the ground by laborers
or university graduates. Following this argument, differentiated inputs are more susceptive to ’skill embed-

ding’ – their product characteristics reflect the skill intensity, or complexity, of the underlying production

3It is important to note that by construction, input-output linkages do not include investment goods. Thus, ITSC is strictly
separated from capital-skill complementarity in my analysis.

4As Scherer (1982) for the United States and Pavitt (1984) for Great Britain show, product innovation in upstream sectors serves
to improve productivity and quality of output in the buying industries.
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process. In contrast, innovations in the production of homogeneous inputs improve processes rather than

products, and thus have little effect on downstream skill demand.5 Combining Rauch’s (1999) classification
of product differentiation with input-output tables, I construct a measure of input differentiation. I demon-

strate that ITSC is increasing in the degree of input differentiation, and is close to zero for sectors that use
mainly homogeneous inputs. In other words, intersectoral skill complementarities are strong when differ-

entiated intermediates like electronic components form the link. However, when linkages work through
homogeneous goods like crude oil, input skill intensity does not matter for skill shares in final production.

Finally, the paper sheds light on the quantitative importance of ITSC. I provide a simple extension of
the standard SBTC framework with a CES production function, allowing upstream skill bias to affect the

relative productivity of skilled workers in downstream industries. To measure upstream skill bias, I apply
Caselli and Coleman’s (2006) labor efficiency-based methodology at the sectoral level. I then estimate the

model in a reduced form, where skill demand depends on within-sector skill bias as well as upstream skill
bias. This allows me to evaluate the magnitude of the multiplier effect. On average, the estimates imply

that ITSC augments any given within-sector skill demand by approximately one third. Since the previously
identified within-sector drivers account for about 50% of skill upgrading, this suggests that ITSC delivers

another 17%.6

This paper adds a novel angle to a large body of studies that seek to explain the remarkable increase in

wage inequality in the United States starting in the 1960s.7 Existing work can explain some of the rising
inequality, but falls short of accounting for all of it. The first prominent channel is trade and its effect on

international patterns of specialization (e.g., Leamer, 1996; Wood, 1998). The between-component of trade
– relocating production of low-skill-intensive industries to low-skill abundant countries – contributes little to

the observed skill upgrading (Berman et al., 1994; Autor, Katz, and Krueger, 1998). Within-industry effects
appear to be more important. To explain this observation, Feenstra and Hanson (1999) suggest outsourcing

of low-skill intensive activities within firms or sectors. Their measure explains up to 15% of relative wage
increases in U.S. manufacturing.8

The second prominent channel is skill-biased technical change. Numerous studies conceptualize SBTC
as a complementarity between capital (or technology) and skills, where computer-based information tech-

nologies (IT) play a central, although disputed role (DiNardo and Pischke, 1997; Card and DiNardo, 2002;
Autor, Levy, and Murnane, 2003). So far, the empirical SBTC literature has treated technology-skill com-

5I provide evidence for this assertion, combining data on sectoral product and process innovation from Scherer (1982) with
Rauch’s (1999) classification of product differentiation. The constructed cross-section shows that product innovation is more
pronounced in sectors that produce differentiated goods. Thus, downstream users of differentiated intermediates purchase relatively
more embedded product innovation.

6As discussed in section 3, these magnitudes have to be interpreted with caution due to possible endogeneity bias.
7For a recent review see Autor, Katz, and Kearney (2008), who also show that the growth of wage inequality is not an episodic

event and provide new evidence showing that demand forces have played a key role in this process. Goldin and Katz (2009) provide
a broad summary of U.S. income inequality, with particular emphasis on skill supply via education. Skill upgrading is also observed
in other OECD countries (Machin and van Reenen, 1998; Berman, Bound, and Machin, 1998) as well as in developing countries
(Pavcnik, 2003; Zhu, 2005). Acemoglu (1998, 2002a, 2007) provides a theoretical framework for factor-biased technological
change.

8Crinò (2010) shows that offshoring also raises white-collar labor demand in the U.S. service sector.
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plementarities as a phenomenon within specific industries, within firms, and at the worker level.9 Computers

and other high-tech capital have been shown to contribute about one third to the increase in white-collar la-
bor demand in manufacturing (Feenstra and Hanson, 1999; Autor et al., 1998, 2003).10 Thus, the two most

prominent (and previously quantified) drivers of skill upgrading – trade and IT – explain only about half of
the overall magnitude.

There are other channels whose contribution to rising skill demand is more controversial or harder to pin
down. I briefly discuss three prominent examples. First, Krusell, Ohanian, Ríus-Rull, and Violante (2000)

provide a framework to quantify Griliches’ (1969) influential hypothesis of a capital-skill complementarity.
Krusell et al. find that observed changes in (quality-adjusted) capital inputs alone can explain most of the

variation in the aggregate U.S. skill premium between the 1960s and early 90s. However, this finding has
proved controversial; Acemoglu (2002b) shows that the result disappears upon the inclusion of a linear time

trend. I do not take a stand on either of these positions and instead control for sector-level capital equipment
to let the data speak for themselves. Second, R&D is another potential driver of SBTC. However, while

several studies document significantly positive coefficients of R&D intensity (Machin and van Reenen,
1998; Autor et al., 1998), the variable itself changes relatively little over time so that its contribution to skill

upgrading in manufacturing is probably limited. Finally, Card and DiNardo (2002) argue that rising wage
inequality throughout the 1980s was merely an "episodic" event, driven mainly by declining real minimum

wages. Autor et al. (2008) revise these claims, showing that rising inequality was largely driven by the upper
part of the wage distribution, so that minimum wages cannot serve as an explanation.

The results reviewed above, and the ones presented in this paper, refer to a two-sector setup with white-
collar and blue-collar workers. Recently, several contributions have shown that this classification into two

skill groups may be over-simplified. The U.S. and other developed countries have witnessed a polarization
of labor demand; the middle-skilled group has been negatively affected by the automation of routine tasks

(c.f. Autor et al., 2003; Goos and Manning, 2007; Autor et al., 2008; Acemoglu and Autor, 2011). Neverthe-
less, for a first pass at identifying intersectoral skill complementarities, it is sufficient to focus on two skill

categories. This also has the advantage that consistent data are available for a long horizon in U.S. manu-
facturing. In addition, the trends in skill demand in manufacturing are representative of those in the U.S.

economy overall (see Appendix A.1). Thus, many of the findings documented in this paper are probably
generalizable to other sectors.

9For industries, Berman et al. (1994) find that the rate of skill upgrading within U.S. manufacturing is strongly correlated with
IT investment and R&D; IT accounts for much of the demand shift towards skilled workers over the 1980s. This effect has been
greater in more IT-intensive industries (Autor et al., 1998). Autor et al. (2003) argue that computer capital substitutes for ’routine
tasks’ while it complements more complex ’nonroutine’ tasks performed by skilled workers. At the firm and plant level, Levy and
Murnane (1996), Doms et al. (1997), and Bresnahan, Brynjolfsson, and Hitt (2002) use broad measures of technological progress
and provide evidence for skill-favoring demand shifts. Finally, at the worker level, Krueger (1993) and Autor et al. (1998) document
a strong positive correlation between wages and computer use. Epifani and Gancia (2006) point out scale increases as an additional
channel for skill bias. See Bound and Johnson (1992) and Autor et al. (2008) for an assessment of alternative explanations for wage
inequality. Katz and Autor (1999) and Sanders and ter Weel (2000) summarize the literature at the three levels of aggregation.

10These estimates are to be interpreted with caution, as they take correlation coefficients as causal effects. Autor et al. (2003)
investigate computer-induced task shifts in all sectors of the U.S. economy. Their approach can explain up to sixty percent of the
relative demand shift favoring college labor; half of this impact is due to task changes within nominally identical occupations. The
remaining thirty percent between occupations are similar to Feenstra and Hanson’s finding.
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There is an ample literature on input-output linkages, starting with the pioneering work of Leontief

(1936) and Hirschman (1958). Intermediate inputs account for a substantial share of overall costs – about
50% according to U.S. input-output tables. The remaining costs include employee compensation (about

30%) and payments to capital (about 16%).11 Studies of capital-skill complementarity therefore focus on a
relatively small component of the final product’s value. The empirical approach in this paper profits from

the fact that by construction, intermediate linkages do not include investment (capital) goods. Thus, ITSC
is strictly separated from the capital-skill complementarity literature.

Several studies have focused on the role of input-output multipliers in economic development. Ciccone
(2002) shows that small increasing returns at the firm level can translate into large effects on aggregate

income when industrialization goes hand-in-hand with the adoption of intermediate-input intensive tech-
nologies. Jones (2011) adds the role of input complementarity. Multipliers have also been used to explain

the growth in the trade share of output, or the cyclical behavior of aggregate productivity.12 However, this
paper is the first to investigate the role of intersectoral complementarities for skill upgrading.

The rest of the paper is organized as follows. Section 2 describes the data and explains the construction
of a novel variable – input skill intensity. Section 3 reports empirical result. It first documents intersectoral

technology-skill complementarity and confirms its robustness. The section then investigates one channel
through which ITSC works, and finally examines the quantitative importance of ITSC. Section 4 concludes.

2 Data

This section describes the data that I use to construct input-skill intensity and control variables. Data on

worker characteristics, wages, value of shipment, and real capital (equipment and structures) at the 4-digit
SIC level are from the NBER-CES Manufacturing Industry Database. These data are collected from various

years of the Annual Survey of Manufactures (ASM), and have been widely used to investigate the deter-
minants of rising skill demand in the U.S.13 This (recently updated) database covers the period 1958-2005.

It classifies employment in two broad categories: Production and non-production workers. The former
are ’workers engaged in fabricating, processing, assembling, inspecting, and other manufacturing,’ while

the latter are ’personnel, including those engaged in supervision, installation and servicing of own prod-
uct, sales, delivery, professional, technological, administrative, etc.’ As noted by Berman et al. (1994),

the production/non-production classification closely mirrors the distinction between blue- and white-collar
occupations from the Current Population Survey, which in turn closely reflects educational levels as high

school vs. college. In the following, I refer to non-production (white-collar) workers as high-skilled labor

11These two, together with the minor component ’Indirect business tax and nontax liability’ make up value added. These
percentage values are derived from the 1992 U.S. input-output table from the Bureau of Economic Analysis. The numbers are very
similar in other benchmark years.

12Yi (2003) shows that small decreases in tariff barriers multiply up to large trade increases when intermediates are traded several
times during the production process. Basu (1995) argues that intermediate goods act as a multiplier for price stickiness, augmenting
little firm-level rigidity to a large economy-wide price inflexibility.

13Examples include Berman et al. (1994), Autor et al. (1998), and Feenstra and Hanson (1999). See Bartelsman and Grey (1996)
for a documentation of these data.
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H and to production (blue-collar) workers as low-skilled labor L.

The Bureau of Economic Analysis’ (BEA) Input-Output Use Tables specify expenditures of each indus-
try i for intermediate inputs purchased from industry j. The BEA provides U.S. input-output (I-O) data at

the 4-digit SIC level in 5-year periods (benchmark years) between 1967 and 1992. For some sectors, the
level of aggregation or coverage changes over time. I account for this by aggregating sectors, and match the

resulting I-O panel to the ASM’s 1987 SIC classification.14 This aggregation yields 358 consistent manufac-
turing industries. In 1997, the BEA changed the I-O classification from SIC to NAICS. A correspondence is

provided by the Census Bureau, but the match is imperfect for many sectors at the 4-digit level. In order to
extend my sample to the 1997 and 2002 I-O benchmark tables, I apply the following strategy: (i) if several

NAICS sectors match a single SIC sector, the former are aggregated; (ii) if one NAICS sector is split into
several SIC sectors, industry-commodity specific shares from the 1992 I-O table are used to divide NAICS

into the corresponding SIC components.15 Following this approach, I derive a coherent set of 358 sectors
for all benchmark years between 1967 and 2002.

For each industry, the ASM provides annual data on production and non-production employment and
wage payments, the value of shipments with the corresponding deflator (1987=1), and real capital equip-

ment. From the BEA I-O data, I derive the purchases of industry i from sector j in year t, Xijt, in 5-year
intervals over the period 1967-2002.

Constructing input skill intensity

To construct input skill intensity σit, I first obtain intermediate input shares from the I-O expenditure data

Xijt. Let Xit =
∑

j ̸=iXijt represent total (nominal) expenditures for manufacturing inputs purchased by
industry i outside the same industry in period t. The time-varying intermediate input shares are then given

by aijt = Xijt/Xit. These are broadly stable over time. Spearman’s rank correlation coefficients for aijt
are highly significant and range between .34 (for a1967

ij , a2002
ij ) and .93 (for a1982

ij , a1987
ij ). The same is true for

pairwise correlation coefficients, ranging between .59 and .93. Fluctuations over the eight benchmark years
appear to be mainly noise.16 I use average input shares āij = 1

8

∑02
t=67 aijt between 1967 and 2002 as a

baseline.17 Input skill intensity is then defined as

σit =
∑
j ̸=i

āijhjt (1)

14For example, paper mills (SIC 2621) and paperboard mills (SIC 2631) are available separately in the I-O data until 1982, but
aggregated from 1987 on. I treat these data as one sector, ’paper and paperboard mills’ over the full sample period. Detailed sector
correspondences are available upon request.

15The original NAICS-SIC correspondence is available at http://www.census.gov/epcd/www/naicstab.htm, and the extended
correspondence including industry-commodity specific weights is available from the author.

16For example, in 1967 ’Paperboard containers and boxes’ accounted for 3.4% of the manufacturing inputs in the ’Chocolate
and cacao products’ sector. This number almost quadrupled 5 years later (13.0%), then stabilizing at about 6% until 1992, and
finally jumping to 10% in 1997 and 2002. There is no reason to believe that the changing proportion reflects physical input shares.
Measurement error as well as fluctuations in relative input prices, appear to be reasonable explanations.

17Constant nominal input shares correspond to a Cobb-Douglas technology. In Appendix B.2, I also use shipment deflators to
derive constant price-adjusted input shares, which is closer to a Leontief technology. My results are very similar in this alternative
setup. Both cases would be strong assumptions if nominal or real input shares shifted systematically towards more (or less) skill
intensive industries. However, this is not the case, as I show in section 3.3.
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where hjt ≡ Hjt/(Hjt + Ljt) denotes the share of white-collar workers employed in the production

of input j. As an alternative measure, I calculate σw
it , using wage-bill instead of employment shares:

hwjt ≡ wH,jtHjt/(wH,jtHjt + wL,jtLjt), where wH,jt and wL,jt denote sector-specific white- and blue-

collar wages, respectively. For both measures σit and σw
it , I exclude inputs purchased within the same sector

(j = i). This avoids that skilled workers employed in sector i itself enter its measure of input-embedded

skills, which would bias my results. Using average input shares āij allows me to calculate σit (σw
it ) for all

years where hjt (hwjt) is available from the ASM, that is, for 1958-2005. In the main analysis, I use the

obtained annual data. All results hold when restricting the analysis to benchmark years in 5-year intervals
between 1967 and 2002, as shown below.

A potential concern arises because inputs Xijt (and thus input shares aijt) contain imports from abroad,
while the corresponding skill shares hjt are measured in U.S. sectors.18 However, the resulting measure-

ment error of σit is likely to be minor, in particular prior to the 1990s, when the share of U.S. imports in
non-energy intermediates was below 15% (see the calculation of outsourcing variables in Appendix A.4).

Moreover, most U.S. imports of intermediates in this period were sourced from other OECD countries with
similar skill intensities. I show below that my results are identical for the pre-1980s subsample.

By construction, σit ∈ [0, 1] is the weighted average share of white-collar workers involved in the
production of sector i’s intermediate manufacturing inputs. A more conservative measure of input skill

intensity is obtained by excluding those inputs that are purchased within the same two-digit SIC industry.
I implement this idea by restricting the four-digit industry subscripts i and j in (1) to be outside the same

two-digit SIC industry. The resulting measure is labeled σ2d
it . It addresses the concern that skill upgrading

may happen simultaneously in similar industries, which would imply a spurious correlation of input and

final production skill intensities when similar sectors buy each other’s inputs. In addition, I calculate σnc
it ,

excluding all electronic computing parts purchased as intermediate inputs.19 This variation of input skill

intensity is particularly conservative in treating SBTC driven by computerization (cf. Autor et al., 1998,
2003). While computing-related intermediates do not include investment in computers as final products

(e.g., computer equipment for use in offices), the two categories may be interrelated at the sectoral level.
For example, high-tech sectors may adopt both computer equipment and computing-related intermediates

more extensively than other sectors. The measure σnc
it addresses this issue by excluding computing-related

intermediates. For both σ2d
it and σnc

it , the corresponding input shares a2d
ijt and anc

ijt are calculated such that

they sum to one, allowing a direct comparison with the estimated coefficients for σit.
Input skill intensity σit is distributed between .06 and .57 with mean .25 and standard deviation .05.

Between 1958 and 2005, σit increased by 4.4% for an average industry. Across individual industries, this

change varied widely – from a drop of 12.3% for Creamery Butter to a rise by 14.9% for communication
equipment.20 Table 1 shows that sectors with declining σit over this period are mainly textile and food

18Unfortunately, the BEA provides import matrices only from 1997 on. But even these numbers are approximations and do not
include the source country. Actual data on domestic vs. imported content of an industry’s intermediate inputs are, for the most part,
not available.

19In the 1987 SIC code, these comprise commodities 3571-2, 3575, and 3577.
20Sectoral levels of input skill intensity are not important for my empirical results – they are taken up by industry fixed effects in
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industries, such as ’Leather tanning & finishing,’ or ’Yarn mills.’ These tend to use primary inputs, which

in turn changed little or dropped in terms of white-collar employment shares. Industries that experienced
the largest increase in input skill intensity include various electronic, computing, and communication equip-

ment, as well as aircraft and space industries, all of which intensively use high-tech inputs that experienced
innovation and skill-upgrading throughout the last decades.

[Insert Table 1 here]

Additional control variables

In the empirical analysis I include several variables that have been previously used to explain increasing

demand for skilled labor. In the following I describe these variables briefly. The appendix provides more
detail. Krusell et al. (2000) argue that the stock of capital equipment is complementary to skilled labor.

To control for this capital-skill complementarity, I include real capital equipment per worker, kequip. Data
on research and development (R&D) intensity are from the National Science Foundation (NSF). Following

Autor et al. (1998), I use lagged R&D intensity (R&Dlag) in the regressions.21 I use data from the BEA to
construct sectoral shares of high-technology capital (HT/K) and office, computing & accounting equipment

(OCAM/K).22 These data, as well as R&D intensity, are available at roughly the 2-digit SIC level. Feenstra

and Hanson (1999) document a significant impact of foreign outsourcing on relative wages. I calculate
their broad (OSbroad) and narrow (OSnarr) measures of outsourcing for the years and sectors included in my

sample. Feenstra and Hanson argue that the narrow measure – from within the same two-digit industry –
best captures the idea of outsourcing. For example, the import of steel by a U.S. automobile producer is

normally not considered as outsourcing, while it is common to think of imported automobile parts by that
company as outsourcing. Following this reasoning, I use OSnarr as a baseline and include the difference

between OSbroad and OS narr as an additional regressor. Appendix A.4 provides additional information on
the construction and sources of control variables.

Table 2 reports the pairwise correlations between two measures of input skill intensity (σit and σ2d
it ) and

the most prominent control variables. As in most of the following analyses, these correlations are obtained

after controlling for industry and time fixed effects. The two measures of input skill intensity are highly
correlated with one another, and are also correlated with control variables commonly used in the SBTC

literature. Industries using skill-intensive intermediates tend to be capital and R&D intensive, employ high-
tech capital, and outsource the production of their intermediates.

[Insert Table 2 here]

the regressions.
21Because industrial R&D intensity tends to be persistent over time, working with lagged or contemporaneous R&D makes

almost no difference to the nature of my results.
22Both technology measures are widely used in studies of wage inequality. See, in particular, Autor et al. (1998) and Feenstra

and Hanson (1999). The computer capital data are likely measured with substantial error, and are often not measured directly but
inferred from employment data, assuming relationships between occupations and capital-type usage. See Becker, Haltiwanger,
Jarmin, Klimek, and Wilson (2006) for a discussion. This implies an upward bias of computer capital’s impact on skill upgrading,
stacking the odds against finding an important contribution of input skill intensity.
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3 Empirical Results

In this section, I show that the novel stylized fact presented in the introduction is not an artifact: The
correlation between input skill intensity and final production skill shares is robust to a variety of additional

controls and specifications. I also provide suggestive evidence that is in line with ITSC working through
product innovation. Finally, I examine the importance of intersectoral technology-skill complementarity for

skill upgrading in U.S. manufacturing.

3.1 Correlation of Skill Intensity across Sectors

This section estimates different versions of the basic linear equation:

hit = αi + αt + βσit + γZit + εit (2)

where t indexes years between 1958 and 2005. Following the common empirical strategy in the SBTC
literature (c.f. Autor et al., 1998; Machin and van Reenen, 1998), I use the high-skill labor share hit (or the

wage bill share hwit) as dependent variable. Input skill intensity σit is calculated as in (1).23 Zit represents
a set of variables that control for within-sector skill bias (note that γ is a vector of coefficients), and αi

and αt denote industry and time fixed effects, respectively. Finally, εit represents measurement error and

unobserved drivers of the skilled labor share. My sample covers 358 sectors over 48 years. In the following,
I drop time- and industry indexes for ease of exposition; unless mentioned otherwise, all variables are panel

variables and implicity carry the index it.
A first look at the data was provided above by Figure 1, plotting a cross-section of h against σ, where

both variables are calculated in 1992. The corresponding regression, including a constant term, yields a
highly significant coefficient: β = .957, with a (robust) standard error of .101. Column 1 in Table 3

reports a similar (although slightly larger) result for the pooled OLS regression using the annual panel. Two
concerns arise. First, the observed correlation may be due to unobserved sectoral characteristics that drive

both h and σ. For example, industries that share input linkages may tend to locate close to one another,
so that local labor supply may affect skill intensity in both upstream and downstream industries, making

the observed correlation a spurious relationship.24 Second, in the pooled OLS, the correlation between h

and σ may be spurious, driven by a general trend of skill upgrading. To address these concerns, I add

sectoral and time fixed effects to the panel regressions in columns 2 and 3, respectively. The coefficients
on input skill intensity remain highly significant and positive. While sector dummies capture unobserved

static characteristics at the detailed (4-digit) industry level, common trends across I-O linked sectors and

23Because σit is based on hj ̸=i,t, the estimation in (2) offers a straightforward interpretation – it illustrates the correlation of
skill-intensity in upstream and downstream production. In section 3.5, which examines the relative magnitude of ITSC, I provide
more structure by deriving the estimation equation from a CES production function.

24Another story would be that the skill share in both final and the corresponding intermediate production is determined by
technological history. Suppose that ’old’ sectors are low-skill intensive, buying mainly ’old’ inputs, while ’modern’ sectors employ
skilled workers and purchase ’modern’ inputs. This would yield the observed correlation even in the absence of intersectoral
technology-skill complementarities.
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endogeneity bias remain a concern. I address these in more detail below.

[Insert Table 3 here]

In column 4 of Table 3, I control for capital endowment as a determinant of skill upgrading. Krusell

et al. (2000) argue that there is a strong complementarity between capital equipment and skilled labor in the

aggregate U.S. economy. This finding is not reproduced at the detailed industry level – the coefficient on
kequip has the wrong sign.25 I also add the computer capital share OCAM/K and the difference between

high-tech and computer capital share (HT/K − OCAM/K), which represents the fraction of capital ser-
vices derived from various high-technology assets other than office, computing and accounting machinery.

Both correlate positively with the proportion of skilled labor, and the latter is highly significant. This re-
flects the well-documented IT-skill complementarity. The coefficient of input skill intensity is robust to the

inclusion of capital controls. The same holds when further controls are included: Column 5 adds the out-
sourcing variable OSnarr, together with the difference between the broad and narrow outsourcing measures

OSbroad − OSnarr. The latter represents intermediate inputs from outside the two-digit purchasing industry
that are sourced from abroad. In addition, column 5 controls for R&D intensity. The sample size is now

slightly smaller due to missing observations in the outsourcing measure. Lagged R&D intensity as well
as the outsourcing variables have a significantly positive correlation with skilled labor in final production,

which confirms previous findings (Machin and van Reenen, 1998; Feenstra and Hanson, 1999).
Column 6 uses an alternative measure of input skill intensity, σ2d, excluding inputs purchased within

the same 2-digit industries. This specification addresses the concern that common trends or technology
shocks may drive skill upgrading in similar industries, biasing β upwards when these industries are linked

via input-output relationships. The more conservative measure comes along with a cost: σ2d discards a
substantial part of intersectoral linkages, since sectors purchase on average 35% of their inputs within the

same 2-digit category. Therefore, σ2d is a more noisy measure of input skill intensity and likely subject to
attenuation bias. Nevertheless, the coefficient is only slightly smaller than in the previous specifications and

still highly significant. Appendix B.1 shows that my results are also very similar when excluding computer-
related intermediate inputs or when using the wage-bill share of white collar workers to calculate input skill

intensity.
How much of the variation in h can input skill intensity explain? Table 3 reports two frequently used

measures for the goodness of fit: One including the variation explained by sectoral fixed effects (R2), and
the other assessing the model’s fit after accounting for sectoral dummies (R2 within). The former is close

to unity, beginning in column 2, i.e., once sector fixed effects are included. The latter implies that the
regressions presented in Table 3 account for roughly half of the variation of h within sectors over time.

Changes in R2-within can be interpreted as explanatory power of individual variables. I analyze the most
conservative case, calculating △R2-within when adding σ to the regression after all other controls and fixed

25This supports Acemoglu’s (2002b) critical view of Krusell et al.’s results, which disappears when a linear time trend is included
in the regressions. In fact, if I include only kequip and sectoral dummies as explanatory variables in (2), the coefficient on kequip is
positive and highly significant. As soon as other controls or time dummies are included, the coefficient becomes insignificant or
significantly negative.
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effects have been included. This implies that input skill intensity can account for about 3% of the variation

in white-collar labor shares within sectors; when allowing for variation across sectors, σ explains about 8%
of the variation.26 However, these results should not be interpreted as the quantitative importance of ITSC,

which is analyzed in section 3.5.
Finally, I implement two additional checks addressing the concern that common shocks to similar in-

dustries drive my results. Both are based on column 5 and are not reported in the table. First, I include
year-specific dummies at the 2-digit industry level in addition to all controls and sector fixed effects. These

absorb common industry shocks to skill demand, such that the coefficient β only reflects the variation of
detailed 4-digit sectors relative to the corresponding 2-digit industries. Even with this restriction, the co-

efficient remains significant and of similar magnitude, β = .413 (.198). Second, I use the 5-year lag of
σ. The coefficient on σi,t−5 is highly significant, .383 (.115), with all other coefficients very similar to

those reported in column 5. This finding mitigates the concern related to common shocks and simultaneity
– to maintain it, one would have to argue that downstream skill demand reacts half a decade later than its

upstream counterpart to the same shock.

3.2 Periods of Stagnant and Rising Skill Premia

My sample spans a period of a relatively constant manufacturing skill premium until the early 1980s and

thereafter a period of rapid increases in wH/wL. Between 1958 and 1980, wH/wL grew by .05% on average,
which almost tripled to .14% between 1980 and 2005. The share of white-collar employment, however, rose

at a roughly constant rate over the full sample period (.62 and .52 percent, respectively). With the skill
premium and the share of skilled workers rising hand-in-hand, skill demand must have risen throughout the

full period; and possibly at a faster pace from the 1980s onwards.27 This section allows all coefficients in
(2) to differ between the two periods, by multiplying each variable with the indicator It≥1980 (which equals

one from 1980 onward).
Table 4 presents the results. Once all control variables are included (from column 4 on), the correlation

of input skill intensity and the skill share in final production does not change significantly between the two
periods. This indicates that ITSC is a stable phenomenon. The coefficients of capital equipment does not

differ significantly across the two periods, either, while R&D intensity appears to be less important in the
second half of the sample. The contrary is true for computer capital. OCAM/K becomes important only

from 1980 onward, suggesting that computers contributed to the hike in the skill premium (c.f. Autor et al.,
2003). The broader category, high-tech capital other than computers, gained less additional importance

during the second period. Finally, the broad outsourcing measure correlates more strongly with h after
1980, suggesting that offshoring, like computers, contributed to the acceleration of skill demand and thus to

the spike in the wage premium after the 1980s.

26When σ is excluded from column 5, the R2-within drops from 0.476 to 0.444. In the absence of sector fixed effects (but with
all other controls; not reported in the table), the adjusted R2 drops from 0.484 to 0.407 when σ is excluded.

27Goldin and Katz (2009) point out that for the U.S. economy as a whole, a slowdown in the growth of educational attainment
since the 1980s is likely responsible for the rising post-1980 college wage premium. This skill supply effect appears to be less
pronounced in manufacturing, where the growth of h decelerated only slightly after 1980.
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[Insert Table 4 here]

3.3 Robustness of the Correlation

So far, input skill intensity (σ and σ2d) was calculated based on constant input shares. In the following, I

show that my findings are robust to using input skill intensity measures based on changing input shares. This
requires to restrict the sample to years where benchmark I-O data are available: 5-year intervals between

1967 and 2002. Finally, I test the sensitivity and robustness of my estimates to alternative specifications and
controls.

Input skill intensity with time-varying input shares

My baseline input skill intensity measures in (1) are derived from average input shares āij . In the following,

I use the time-varying aij to construct an alternative input skill intensity measure, Sit =
∑

j ̸=i aijthjt. This
variable can be decomposed into three parts. First, a skill component σit, as defined in (1), representing

constant input expenditure shares with changing skilled labor shares of suppliers. Second, an input-mix
component τit =

∑
j ̸=i aijth̄j , reflecting varying input shares with constant skilled labor shares of suppliers.

This variable grows over time if sector i switches its input mix towards more skill intensive intermediates.
Finally, a covariance component ρit =

∑
j ̸=i(aijt − āij)(hjt − h̄j) −

∑
j ̸=i āij h̄j , which grows if sector i

switches its input mix towards sectors whose skill intensity rises over time.28 Note that Sit = σit+ τit+ρit.

Because time-varying input shares are only available for I-O benchmark years, I restrict the sample to
quinquennial intervals between 1967 and 2002. Over this period, the skill component σit is by far the most

important contributor to increases in Sit. The weighted average of Sit increases from 22.2 to 27.7 percent.
Of this 5.5% rise, 5.7% are due to σit, 0.7% to τit, and -0.9% to ρit. The latter means that on average, sectors

lowered their expenditure share for intermediates whose skill intensity rose rapidly (although the magnitude
of this shift is small).

Table 5 reports the estimation results of regression (2) with all variables in 5-year intervals between 1967
and 2002. The first two columns show that the coefficient of σit is very similar in magnitude compared with

the annual regressions, despite the fact that the number of observations is substantially lower. Moreover,
neither including the two variables τit and ρit, nor controlling for additional variables affects the significance

of σit.29 The same is true for the more conservative measure σ2d
it in columns 3 and 4.

[Insert Table 5 here]

The covariance components ρit and ρ2d
it are positive and significant in most specifications. Note that

because ρit fell slightly over the sample period, this contributes negatively to hit. In other words, because

industries lowered their expenditure shares for intermediates with rising skill intensity, the skill share in final
production rose somewhat less rapidly than it would have with constant intermediate expenditure shares.

28The term
∑

j ̸=i āij h̄j is a constant for each sector i and does not influence estimation results in the presence of sectoral fixed
effects.

29As was the case with annual data in Table 3, the coefficient of σit drops by about .3 when the full set of controls is included.
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Finally, the results do not indicate that a general switch towards more skill intensive intermediates drove

skill demand in final production – the input mix components τit and τ 2d
it are not robust. However, this

finding is likely affected by the noise in the time-varying input shares.30 Similarly, I expect attenuation bias

and therefore a smaller coefficient when using the composite skill intensity Sit. Columns 5 and 6 show this
result with and without control variables. Nevertheless, the coefficients on Sit are still highly significant.

Alternative specifications and further controls

Some controls used in the following are derived directly from I-O tables, and are thus only available for

benchmark years. For consistency, I thus use the quinquennial sample for all alternative specifications. I
run regression (2) in changes, include further controls, and restrict the sample to single years, analyzing

cross-sections rather than a panel. I also show that my findings are robust to the inclusion of sector-specific
time trends. Table 6 presents the first set of results.

[Insert Table 6 here]

The first column of Table 6 runs the baseline regression in changes, instead of including fixed effects.

All variables are in 5-year differences. The corresponding coefficient on input skill intensity is very similar
to the one obtained above in the annual sample, and is again highly significant. In column 2, I return

to estimating levels, including fixed effects and all previously used controls. Additionally, I control for a
number of other variables that potentially drive skill demand. First, two measures of the ’complexity’ of the

production process: The variety of inputs used in production, measured as one minus the Herfindahl index of
input concentration for each industry (1−Hit). This variable is used as a measure of a good’s ’complexity’

by Blanchard and Kremer (1997) to explain the decline of output when bargaining breaks down along the
production chain. The other measure for production ’complexity’ is an indicator function for the number

of inputs, proposed by Nunn (2007). Init>n̄t
it equals one if the number of inputs nit used in industry i

in year t is greater than the median number of inputs used in all industries, n̄t. I derive both measures

from the benchmark I-O tables for the quinquennial sample. Since more ’complex’ production processes
require more coordination, I expect these variables to have a positive impact on the demand for skilled labor.

Second, I include the sector-specific skill premium, or relative wage wH,it/wL,it, to capture differences in
cost and quality of skilled workers across sectors.31 Third, I control for production scale and productivity by

including the real value of shipments, ln(Y ), and total factor productivity, ln(TFP ). Finally, the share of
value added in total cost controls for the overall importance of labor and capital (as opposed to intermediate

inputs) in production. Service-oriented sectors generally have a larger value added share, and also a higher
proportion of white-collar labor.

30Less than 1/3 of all relevant (i.e., non-zero) input shares have a time-trend that is significant at the 10% level. In an additional
check not presented here, I calculate τit and ρit using changing input shares whenever the time-trend is significant, and average
shares otherwise. Under this method, τit is significant at the 5% level when all controls are included, while the coefficient of σit

remains unchanged.
31 Because of its endogeneity with skill demand, this variable is usually not included in regressions where the dependent variable

is the share of skilled workers. See Feenstra (2004, ch. 4) for a discussion.
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The inclusion of further control variables shown in column 2 of Table 6 changes neither the size nor

the high statistical significance of the coefficient on input skill intensity. Most additional controls are in-
significant. Neither of the two I-O based measures for production ’complexity’ has a significant impact on

skill demand.32 The relative wage of skilled workers is significant with the expected negative sign. Column
3 presents the regression with the non-production wage-bill share as dependent variable. This measure is

frequently used as an alternative to the purely labor based measure, as it also captures skill upgrading within

either occupational category (Berman et al., 1994).33 The wage-bill regression confirms magnitude and sig-

nificance of the ITSC effect. Appendix B.1 provides additional robustness checks involving the wage-bill
share of white collar workers.

In all panel regressions presented so far, I address the concern of inconsistent standard errors due to
serially correlated observations by accounting for correlation within sectors across time (i.e., by clustering

standard errors at the sector level). Bertrand, Duflo, and Mullainathan (2004) argue that this correction alone
may not fully solve the problem and suggest collapsing the time series information into single periods as a

further correction.34 Columns 4-6 of Table 6 implement this additional consistency check, presenting cross-
sectional regressions for the first and the last benchmark year based on SIC I-O data (1967 and 1992), as well

as for the last year of the sample, which is based on a correspondence from NAICS to SIC (2002). Fixed
effects cannot be used in this specification, raising the concern that unobserved characteristics, like similarity

of sectors, drive the correlation between input skill intensity and the skilled labor share in final production.
To alleviate this concern, I use σ2d as the input skill intensity measure, excluding linkages within 2-digit

industries. The corresponding coefficient is of the same magnitude as observed before, significant in 1967,
and highly significant in 1992 and 2002. Most control variables also confirm the previous findings. Finally,

production ’complexity,’ measured by Ini>n̄
i , correlates positively with skill demand and is statistically

significant in the 1992 cross-section.

Table 7 reports further robustness checks. The first column shows results for unweighted regressions,
while the second column restricts the sample to the 1967-92 benchmark years. This corresponds to the

period for which a consistent I-O classification at the 4-digit SIC level is available. For the remaining
benchmark years – 1997 and 2002 – input shares are based on a BEA correspondence between NAICS and

SIC. Both columns 1 and 2 confirm my results. Finally, columns 3-5 include time trends at the 4-digit sector
level in addition to fixed effects. This addresses the concern that the observed ITSC is driven by common

trends in sectors that share input-output linkages.35 The coefficients on the three measures of input skill

intensity (σ, σ2d
i , and σw

i ) drop only slightly. Altogether, the empirical results suggests that ITSC is a highly
robust novel finding that is not driven by simultaneous skill upgrading in similar sectors.

32The two complexity measures vary little over time, and the inclusion of sector fixed effects eliminates much of their variation.
In fact, when running the same regression without sector dummies, the coefficient of Ini>n̄

i is positive and significant.
33Fox and Smeets (2011) show that the wage bill explains as much productivity dispersion across firms as a wide array of human

capital measures, using a matched employer-employee dataset from Denmark.
34Long time series (15 periods and more) are a major contributing factor to Bertrand et al.’s concern – this applies to my baseline

analysis with annual data between 1958 and 2005. The quinquennial benchmark year panel, however, involves only 8 periods.
Thus, the concern is likely of minor importance for this subsample, given that I am already controlling for serial correlation.

35In addition, the setup will capture different sector-specific trends in the relative quality of H vs. L.
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[Insert Table 7 here]

3.4 Product Innovation and Channel of ITSC

This section examines one possible channel through which intersectoral technology-skill complementarity

works. In the empirical framework analyzed above, upstream and downstream sectors are linked through
intermediate products. Spillovers along intermediate linkages are thus a natural starting point to look for

the ITSC channel. In the following, I suggest that product innovation is a potential way through which such
spillovers may work: Skilled workers (or their ideas) shape intermediate products such that skills are needed

in their further processing. The channel is thus product innovation, and whether or not it operates depends
on the characteristics of the involved intermediates. For example, suppose that Exxon decides to boost

productivity in oil extraction and hires a large number of engineers. More skills will shape the extraction
process, but not the product – crude oil. Consequently, skill demand in a downstream refinery will be

unaffected by Exxon’s skill upgrading. On the other hand, trained engineers inventing ever better and smaller
data storage devices enabled Apple to launch the iPad – a highly skill-intensive endeavor.36 Crude oil is a

homogeneous product, while data storage devices are differentiated; my investigation of the ITSC channel is
built around this classification. I provide suggestive evidence that ITSC is strong when highly differentiated

intermediates form the link, while the relationship is insignificant for homogeneous intermediates. Before
turning to the data, I briefly discuss the two separate concepts of linkages across sectors and innovation-skill

complementarity within sectors. Joining them implies ITSC via product innovation.

Intersectoral Linkages and Skill Complementarity

Linkages across industries alone need not imply connected skill requirements. What makes the proposed
point plausible is innovation-skill complementarity within sectors, combined with innovation spillovers

across sectors, through input-output linkages. There is substantial evidence for technological linkages across
sectors. Scherer (1982) and Pavitt (1984) use patent data to track the flow of innovation across sectors. Both

confirm the overall prevalence of product innovation, which accounts for 73.8 percent of total R&D outlays
in the United States, and 75.3 percent in Great Britain.37 As Scherer (1982, p.227) emphasizes:

"If [a new product] is a producer good or intermediate sold externally, it serves to improve
output/input relationships or the quality of output in the buying industries. With a new turbojet

engine product, for example, the R&D is performed in the aircraft engine industry, but the
productivity effect often shows up in lower energy consumption or faster, quieter, and more

reliable operation of equipment used by the quite distinct airlines industry. [...] to assume that
the productivity-enhancing effect occurs solely within the R&D-performing industry [...] is

more wrong than right, since three-fourths of all industrial R&D is devoted to new or improved

36The story also works in the opposite direction. When Apple works on improvements for the next-generation iPad, it creates
demand for more powerful memory devices and batteries. Both causal directions are compatible with the ITSC framework.

37In this context, product innovations are by definition used outside their sector of origin, i.e., they are passed to downstream
sectors or consumers in the form of improved products. Scherer (1982) also provides evidence that most productivity benefits are
realized by R&D using, rather than product R&D-originating industries.
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products, as distinguished from processes."

There is ample evidence for innovation spillovers from upstream suppliers to downstream final producers,

via intermediate linkages. The channel also operates in the opposite direction. For example, Blalock and
Gertler (2008) document vertical spillovers in the case of foreign investment in Indonesia: Subsidiaries of

multinational enterprises provide technological knowledge to their local intermediate suppliers in order to
reduce prices and increase competition in upstream markets.38

Within sectors, innovation goes hand in hand with skilled labor.39 In addition, much of the innovative
activity creates new products that are used as intermediates in other sectors. So far, these two facts have been

treated separately in the literature. Combining them yields an intersectoral technology-skill complementar-
ity. The interactions of innovation and skills run in both directions, and across sectors, reinforcing one

another. Individually and collectively, innovations in sectors related through input-output linkages increase
the relative demand for skilled labor (h) as summarized below:

Downstream Upstream

Product Innovationi ⇔ Product Innovationj

↕ I-O linkages ↕

hi hj

Closest in spirit to this interpretation of ITSC are the complementarity frameworks proposed by Milgrom

and Roberts (1990) and Bresnahan et al. (2002), where the adoption of IT, work organization, product
innovation, and skill upgrading reinforce each other within, but not across firms.40

Empirical implementation: Product innovation and product differentiation

To provide suggestive evidence for the product innovation channel, I follow a two-step process. First, I
show that sectors producing differentiated products spend relatively more R&D for product innovation,

while producers of homogeneous goods concentrate on innovating their own processes. This suggests that
differentiated products embody more innovation than homogeneous ones. Therefore, sectors using differen-

tiated intermediates purchase relatively more embodied product innovation, which leads to the second step:
If ITSC works through product innovation, I expect it to be stronger for sectors that use relatively more

differentiated inputs. I provide evidence that is in line with this assertion. In addition, I show that input skill
intensity raises the number of skilled workers, but does not affect the number of unskilled workers. This

finding supports the innovation story, while speaking against automation as a driver of my results.

38For a theoretical framework see Rodríguez-Clare (1996). Keller (2004) and Koo (2005) summarize the literature on interna-
tional and local technology spillovers.

39The same is true for a specific result of innovation: Product quality. As Verhoogen (2008) shows, producing high-quality goods
requires skilled workers.

40Kugler and Verhoogen (2012) use a similar mechanism to explain the positive correlation between input prices, output prices,
and firm size in a panel of Columbian firms. In their framework, input and output quality are complementary.
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As described in Appendix A.2, I derive sectoral shares of R&D expenditures used for product innova-

tion, πprod
i , from Scherer’s (1982) data, and match them to Rauch’s (1999) data on product differentiation.

This gives πprod
i together with the share of products classified as differentiated, Rdiff

i , for 34 manufacturing

industries. The median of Rdiff
i in this sample is .84. The 17 industries turning out goods with below-median

product differentiation spend on average 53% of R&D for inventing new products (as opposed to processes),

while this number is 80% for producers of above-median differentiated goods. After this preliminary obser-
vation, I turn to the simple cross-section regression π

prod
i = δ0 + δ1R

diff
i + εi. The corresponding estimate

is positive and highly significant: δ1 = .416 with a robust standard error of .127 and R2 of .27.41 These
findings suggest that differentiated products are more susceptive to product innovation, such that they are

more readily reshaped by the innovative minds of skilled workers.
These results show that purchasers of differentiated inputs buy on average more innovation incorporated

in their intermediates than users of homogeneous inputs. Therefore, input differentiation gives the degree
to which skill-biased innovation can be ’embedded’ in intermediates. I consequently expect stronger ITSC

when input-output linkages involve more differentiated intermediates. The corresponding measure κi (de-
scribed in Appendix A.3) gives the weighted average degree of input differentiation. I thus expect a larger β

in regression (2) for sectors with larger κi. To obtain a first look at the data, I use κi to define the indicator
variable Iκi>κ̃

i , which equals one for sectors with above-median input differentiation. I then use this variable

to split σit into two components: σAM
it and σBM

it for above- and below-median κi, respectively. Note that
σAM
it + σBM

it = σit. Then I estimate the regression

hit = αi + αt + Iκi>κ̃
i + βAMσAM

it + βBMσBM
it + γZit + εit , (3)

where Iκi>κ̃
i captures the difference in the intercept for sectors with above-median input differentiation

(which is identified if one of the sector-dummies αi is dropped). Figure 2 illustrates the results in the form
of partial scatter plots. The vertical axis shows the variation in the skilled labor share hit to be explained by

input skill intensity, after accounting for fixed effects and the previously used control variables.

[Insert Figure 2 here]

The left panel of Figure 2 shows the partial scatterplot for the full sample, where the corresponding
coefficient from regression (2) is β̂ = .52. The plot also shows that the positive correlation between input

skill intensity and final production skills is a broad phenomenon, not driven by outliers. The right panel
repeats the exercise for estimates from regression (3), showing that ITSC is stronger for sectors that use

more differentiated inputs. The corresponding coefficients are β̂AM = .81 (.15) and β̂BM = .35 (.11),
whose difference is significant at the 1% level.42 In addition, sectors using more differentiated inputs are on

41The result is practically identical when using Rauch’s (1999) conservative estimate to construct Rdiff
i . Outliers are not an issue,

and even excluding the 9 sectors that produce only differentiated products (Rdiff
i = 1) leaves the remaining ones with a significantly

positive δ1.
42A more detailed analysis, using quintiles of input differentiation κi, confirms this result: β̂ increases with each quintile of κi

and is highly significant for all except the first one.
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average more skill intensive: The indicator variable Iκi>κ̃
i has a coefficient of .10 (.04). This is what one

should expect, given that differentiated inputs incorporate more product innovation.
Next, I include interaction terms of explanatory variables with input differentiation κi, estimating the

following extended equation:43

hit = αi + αt + β1σit + β2 κi × σit + γ1Zit + γ2 κi × Zit + εit (4)

Table 8 reports the results, using the two alternative measures for input skill intensity, σ (baseline) and

σ2d (excluding inputs from the same 2-digit sectors). I begin with the annual sample (columns 1-3), and
then show that the results are almost identical when using the quinquennial sample for benchmark years

between 1967 and 2002 (columns 4-6). The interactions ’input differentiation’ × ’input skill intensity’
are positive and highly significant, suggesting that ITSC grows with the degree of input differentiation.

Moreover, the coefficient on input skill intensity alone (β1) is small and insignificant in all specifications.
This indicates that ITSC is not present for a (hypothetical) sector using only homogeneous inputs (κi =

0). To see this, note that the marginal effect of input skill intensity on final production skills is given by
∂hit/∂σit = β1 + β2κi. The implied coefficients are very similar to the direct estimates of β documented

above. The interaction results support the presumption that product innovation is one channel through which
ITSC works. In addition, they argue against the concern that ITSC is a spurious correlation: ITSC is not

present where one would not expect it to appear, and it becomes stronger where one expects intersectoral
skill complementarities to play a more important role.

[Insert Table 8 here]

In Appendix B.3, I analyze whether automation may be an alternative explanation for the findings presented
above – if machines replaced low-skilled workers L, this would also lead to a rising skilled labor share

h = H/(H + L). I find no support for this channel. Finally, it is important to interpret the results from this
subsection with caution. The evidence relies on β̂AM being statistically significantly larger than β̂BM . This

implicitly assumes that possible endogeneity bias has the same direction and size for both estimates.44 In
addition, other channels that are associated with product differentiation may drive the findings. Nevertheless,

the results provide some support for the product innovation channel.

3.5 Multiplier Effect and Importance of ITSC

So far, I have shown that the correlation between input skill intensity and the downstream share of skilled

labor is highly significant and robust to the inclusion of various controls. I have interpreted this finding as
43Because the framework analyzed here potentially involves complementarity among several explanatory variables, I also interact

the control variables with input differentiation. This addresses the concern that the σi × κi interaction alone might capture other
effects related to product differentiation. This is the case, for example, if the processing of differentiated intermediates is more
R&D intensive, or if the degree of outsourcing is related to κi. Input differentiation κi is not included in the regressions, as it is
captured by sectoral fixed effects.

44For example, endogeneity bias may affect the estimates if unobserved common trends are more pronounced in sectors that use
differentiated intermediates – and if such trends span across sectors in different 2-digit categories, so that σ2d does not fully account
for the bias.
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evidence for technology-skill complementarity across sectors. In this final section, I analyze the quantitative

importance of ITSC, providing suggestive evidence for the size of the multiplier effect. I begin with a simple
extension of the standard SBTC framework that allows for spillovers of skill-biased technology along input-

output linkages. This setup delivers a multiplier effect. I then estimate the parameter that governs the size
of the multiplier, and conclude by discussing the limitations of these estimates.

ITSC and Multiplier Effect in the Standard SBTC Framework

To illustrate the multiplier effect resulting from ITSC, I sketch an extension to the standard SBTC frame-
work: A complementarity of skill-biased technology across sectors. In the interest of simplicity, I do not

model intermediate product linkages explicitly – this is not needed for the main result. To generate the
multiplier effect, it is sufficient to introduce a between-sector complementarity in the skill-augmenting pro-

ductivity term of a CES production function. This simple extension also has the advantage that the modified
results can be readily compared to the standard SBTC model.

The standard SBTC setup has two types of labor in a CES production function, producing one final
good.45 Suppose that there are i = 1, ..., N sectors. Within each sector, a multiplicity of firms operates

under perfect competition and constant returns. A representative firm in sector i produces its output using
low-skilled labor Li and high-skilled labor Hi:

Yi =

[
(Ai Hi)

ϵ−1
ϵ + L

ϵ−1
ϵ

i

] ϵ
ϵ−1

, (5)

where ϵ is the elasticity of substitution between the two labor inputs. Ai denotes the relative efficiency of
skilled as compared to unskilled workers in sector i; increases in Ai correspond to SBTC.

I introduce a small but important modification to the standard setup: A complementarity between skill-
biased technologies in upstream and downstream sectors. To formalize this concept, I use a multiplicative

representation in the spirit of Kremer’s (1993) O-Ring theory.

Ai = Ti σ
ϕ
i . (6)

The first variable, Ti, denotes within-sector skill bias in i. For example, investment in computers, high-tech
equipment, or R&D in industry i would be reflected as increases in Ti. Second, σi represents upstream skill

bias. To be precise, let σi be the (weighted) average of the skill bias {Aj}j ̸=i of upstream suppliers to sector
i. Finally, the parameter ϕ ∈ [0, 1) in (6) indicates the strength of the complementarity between upstream

and downstream skill bias. If ϕ > 0, the relative productivity of skilled labor in sector i increases in input
skill bias.46 On the other hand, if ϕ = 0 the model reduces to the standard SBTC setup, where total skill

bias Ai depends only on the within-sector component Ti.

45See Card and DiNardo (2002) and Violante (2006) for a review of the standard SBTC framework.
46As a convention, I limit the parameter ϕ to be less than unity. For larger values, a unit increase in upstream skill bias would

have a larger impact on the productivity of Hi than a unit increase of skill bias within the same sector – that is, the complementarity
would be extremely strong. In this case, the multiplier cannot be derived.
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For simplicity, and to focus attention on the multiplier mechanism, I assume that firms take Ti and σi as

given and choose Li and Hi optimally. Optimization of firms within sectors yields the relative demand for
skilled labor:

Hi

Li
=

(
Ti σ

ϕ
i

)ϵ−1
(
wL

wH

)ϵ

(7)

Relative skill demand is determined by the inverse aggregate skill premium, by within-sector skill bias Ti,
and input skill bias σi. Previous estimates of skill demand focus on the within-sector component Ti as a

source of skill bias. This approach will not detect the full scope of SBTC if ϕ > 0. In this case, aggregate
SBTC will be augmented by a multiplier of skill bias. This is easiest to see in the symmetric case of the

model. Let Ai = A, ∀i, such that σi = A. Therefore, (6) simplifies to

A = T 1/(1−ϕ) (8)

This equation describes the multiplier effect. To see how it works, I derive the skill premium at the aggregate

level from (5).
wH

wL
=

(
T

ϵ−1
ϵ

)1/(1−ϕ)
(
L

H

) 1
ϵ

(9)

The parameter ϕ can be interpreted as the average strength of ITSC in the economy. Note that if ϕ = 0,

aggregate skill bias is equal to within-sector skill bias, which corresponds to the standard SBTC framework.
A multiplicity of studies following Katz and Murphy (1992) estimate (9) in logs and capture aggregate skill

bias by a time trend, commonly finding a large coefficient. However, as discussed above, within-sector
drivers of skill demand (represented by Ti) alone cannot explain the full magnitude of the observed skill

upgrading. The framework presented here can help to reconcile these findings. With ϕ > 0, intersectoral
complementarity delivers a multiplier effect. SBTC in one sector goes hand-in-hand with rising skill bias in

other sectors and eventually feeds back into the originating sector. This amplifies within-sector skill bias, as
reflected by the exponent 1/(1− ϕ), which boosts aggregate skill demand.47

Estimates for the Size of the Multiplier Effect

To shed light on the magnitude of ITSC, I follow the theoretical setup in equation (7), which features

within-sector skill bias Ti as well as input skill bias σi. To derive a measure for the latter, I follow the
methodology from Caselli and Coleman (2006). First, I calculate the relative skill bias of production within

each sector, which is defined as the ratio of high-skill to low-skill labor efficiency in a CES production
function: Arel

it = AH
it /A

L
it. The ratio Arel

it therefore reflects Ai in equation (5). It follows directly from (7)

47This argument is similar to Jones’ (2011) model that delivers a multiplier for productivity differences. The multiplier channel,
however, is different. In Jones’ setup, higher intermediate productivity leads to more output, which feeds back into the production
of intermediates. The share of intermediate goods in total revenue is therefore crucial for the size of the multiplier. In the stylized
setup presented here, the intermediate input share in total output is not important for ITSC. What counts is the size of the parameter
ϕ, i.e., how strongly skill biased innovation embedded in intermediates, σi, is correlated with downstream skill bias, Ai. Linkages
are only important for granting that sectors process each others’ output. They are necessary, but not sufficient for the multiplier to
exist.
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as Arel
it = (wit,H/wit,L)

ϵ/(ϵ−1)(Hit/Lit)
1/(ϵ−1).48 I then modify equation (1), using Arel

jt to calculate the

input skill bias σA
it – the relative skill bias in the production of sector i’s intermediates j ̸= i:

σA
it =

∑
j ̸=i

āijA
rel
jt . (10)

Finally, I take the logarithm of (7) to obtain the estimation equation:

ln

(
Hit

Lit

)
= β ln(σA

it ) + γZit + αi + αt + εit , (11)

where the set of controls Zit accounts for within-sector skill bias (lnTit), using the same variables as in

the previous sections. Note that the relative wage term in (7) refers to the economy overall and is thus
captured by the time dummies αt. In some specifications I also include sector-specific trends, allowing the

relative wage to follow different paths in different sectors. Finally, I include fixed effects αi to account for
unobserved time-invariant heterogeneity across sectors.

The point estimate of β can be used to derive the magnitude of ITSC: ϕ = β/(ϵ − 1), as implied by
(7). Following the SBTC literature, I assume that skilled and unskilled labor are substitutes (ϵ > 1). In

the baseline estimates, I use the value of 1.5 in line with Ciccone and Peri (2005) both to calculate σA
it

and to derive ϕ.49 Table 9 presents the estimates of β – in panel A for the full sample, and in panel B for

the quinquennial benchmark years. Column 1 includes only input skill bias as explanatory variable. The
coefficient is highly significant and positive. Columns 2 and 3 add fixed effects and controls, respectively,

and column 4 additionally uses sector-specific time trends. Finally, columns 5 and 6 repeat the analysis for
σA,2d
it , excluding inputs from the same 2-digit SIC industries.

[Insert Table 9 here]

The point estimates of β when including all controls and fixed effects (columns 3-6) vary between

0.08 and 0.22, which implies that ϕ ranges between 0.16 and 0.44. Following (8), this yields a multiplier of
1/(1−ϕ) = 1.19−1.79, i.e., ITSC amplifies within-sector skill bias by approximately 20-80%. The average

of all estimates in columns 3-6 gives ϕ ≈ 0.25, and thus a multiplier effect of 1.33. If within-sector skill
bias explains one half of the observed increase in skill demand, ITSC delivers another 17%, according to the

average parameter estimate. Appendix B.4 checks the robustness of these results. First, estimating equation
(11) in differences also yields highly significant but on average slightly smaller coefficients spanning the

range 0.04-0.13, which implies a range of 0.08-0.26 for ϕ. Second, I use alternative values for the elasticity
of substitution ϵ. Both ϵ = 1.25 and ϵ = 2.0 yield very similar results as the baseline estimation. Third, I

estimate the logarithm of (6) instead of (7), obtaining direct estimates of ϕ in the approximate range 0.15-0.3.
Altogether, most parameters in these robustness checks (when including all controls and fixed effects) fall

48Caselli and Coleman derive AH
it and AL

it explicitly for a cross-section of countries. For my purposes, the relative skill bias is
sufficient.

49For now, I treat ϵ as a given constant, so that estimates of ϕ and β have the same standard errors. In Appendix B.4 I also treat
ϵ as a random variable and find very similar results.
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in the approximate range 0.1-0.4, implying a multiplier effect of about 1.1-1.7. Finally, Appendix B.4 also

reports standard errors for the multiplier when ϵ is treated as a random variable. Using previous estimates
from the literature for ϵ, I derive a multiplier distribution with mean approximately 1.4 and a standard

deviation of about 0.4, which is in line with the range of estimates obtained above.
The estimated magnitude of ITSC has to be interpreted with caution. It hinges on a simplified represen-

tation of ITSC in the SBTC framework, which is likely more complex in reality. In addition, endogeneity
and simultaneity bias are serious concerns. For example, the simplified model only incorporates the effect

of upstream skill bias on downstream skill demand, but not the opposite causal direction. If the latter is im-
portant, β will be overestimated. Simultaneity bias has the same consequence: Common trends may drive

skill upgrading in sectors that share input-output linkages, and this would lead to overestimates of β. The
regressions above address this concern by including sector-specific time trends. However, if common trends

are non-linear, the potential for bias remains. As a consequence, the derived magnitude of ITSC should be
interpreted as merely suggestive, because the size of the bias is unknown.

4 Conclusion

While intermediate inputs account for more than half of a final product’s value, intersectoral linkages have
been ignored as a source of skill bias. At the same time, existing empirical work, focusing on within-sector

skill bias, cannot account for the full scope of skill upgrading in recent decades. This paper adds intersec-
toral skill complementarities that operate through the use of intermediate products. In this setup, SBTC in

one sector goes hand-in-hand with skill upgrading in many other sectors, which delivers a multiplier that
augments sector-level SBTC into larger aggregate skill bias. This can help to explain why within-sector

studies fail to account for the full scope of aggregate SBTC.
My empirical results are derived from detailed 4-digit sectors in U.S. manufacturing over the period

1958-2005. I analyze input skill intensity, which measures the skills embedded in a sector’s intermediate
inputs. I construct this variable by combining product flows from input-output tables with worker char-

acteristics from the NBER Manufacturing Industry Database. Input skill intensity correlates strongly with
final production skills. This finding is robust to the inclusion of numerous control variables previously sug-

gested in the SBTC literature, as well as to using alternative measures of input skill intensity. The presented
evidence implies intersectoral technology-skill complementarity (ITSC). This result does not come as a sur-

prise. It combines the well-documented findings of a technology-skill complementarity within sectors with
technological spillovers across sectors.

My sample spans a period of relatively constant skill premia – until the late 1970s – and then a period
of rapidly increasing skill premia starting in the 1980s. While outsourcing and IT capital boosted skill

demand particularly in the second period, the coefficients related to ITSC are roughly constant throughout
the sample. This suggests that ITSC contributed persistently to the secular increase in skill demand during

most of the 20th century (Goldin and Katz, 2009).
Downstream industries using differentiated intermediates purchase relatively more embedded innova-
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tion. I show that ITSC is stronger among sectors linked through more differentiated intermediates. This

suggests that product innovation is one potential channel through which spillovers work. Finally, I intro-
duce ITSC in the standard SBTC model and derive a reduced form equation to estimate the size of the

multiplier effect. The empirical framework builds on spillovers along input-output linkages. These are dif-
ficult to identify, and endogeneity bias is a major concern when interpreting the magnitude of coefficients.

Subject to this caveat, the results suggest that ITSC is quantitatively important, explaining about 17% of
skill upgrading in U.S. manufacturing.

In combination, the results of this study suggest that (i) there is a strong complementarity between
upstream use of skilled labor and its downstream employment, (ii) the complementarity is – at least partially

– a result of spillovers through the use of intermediates, and (iii) this intersectoral complementarity leads to a
multiplier effect that augments given within-sector skill bias and thus contributed to the rise in skill demand

over the last decades. These findings may have important economy-wide implications. For example, the
multiplier effect will tend to increase the social returns to education and R&D. To gauge the magnitude

of this aggregate effect, future research should analyze whether ITSC carries over to sectors outside of
manufacturing.
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Figure 1: Skilled labor share in final production vs. input skill intensity

Notes: Data are for 358 U.S. manufacturing sectors in 1992. Input skill intensity is calculated as the
weighted average share of white-collar workers employed in the production of a sector’s intermediate
inputs. Only inputs purchased outside a sector are taken into account. The corresponding regression has
a slope parameter of .957 with a standard error of .101. See Section 2 for a formal description and data
sources, and Section 3 for detailed regression results and robustness.
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Figure 2: Partial scatter plots: Skilled labor share (hit) vs. input skill intensity (σit)

Notes: Figure based on quinquennial data, 1967-2002. The measure of input differentiation κi is calculated as de-
scribed in Appendix A.3, yielding a median of .52. The vertical axis shows hit − (α̂i + α̂t + γ̂Zit); notice that
β̂σit does not appear in this equation. Coefficient estimates α̂i, α̂t, β̂, and γ̂ are obtained by estimating (2) for the
quinquennial sample (2806 obs.), where the controls Zit include: Equipment per worker (kequip), office and computer
capital (OCAM/K), non-computing high-tech capital (HT/K − OCAM/K), R&D intensity (R&Dlag), and the
broad and narrow outsourcing measures (OSnarr and OSbroad −OSnarr). In the left panel, β̂σit is estimated with a co-
efficient of .50 (.12). In the right panel, this coefficient is split into β̂AMσAM

it + β̂BMσBM
it , representing above- and

below-median input differentiation, respectively (see equation (4)). The coefficient estimates are β̂AM = .81 (.15)

and β̂BM = .35 (.11).

Table 1: The ten 4-digit industries with smallest and largest change in σit, 1958-2005

Smallest change Largest change

△σit Industry description △σit Industry description

-.045 Leather tanning & finishing .074 Carbon black
-.021 Thread mills .122 Aircraft
-.024 Narrow fabrics mills .128 Search and navigation equipment
-.024 Ice cream and frozen desserts .129 Jewelry, precious metal
-.033 Cheese, natural and processed .130 Calculating and accounting equipment
-.035 Cordage and twine .133 Guided missiles and space vehicles
-.046 Yarn mills and finishing of textiles .133 Instruments to measure electricity
-.049 Leather tanning and finishing .134 Telephone and telegraph apparatus
-.069 Sausages and other prepared meats .144 Electronic computing equip.
-.080 Tire cord and fabrics .149 Prerecorded records and tapes
-.123 Creamery butter .149 Communication equipment

Note: Input skill intensity σit calculated as in (1). Reported figures are rounded from seven digits to three digits.
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Table 2: Correlations between input skill intensity and control variables

Input skill Capital R&D/ Out-
intensity per

worker
High-
Tech

sales sourcing

Measure σ σ2d kequip HT/K R&Dlag OS narr

σ 1
σ2d .69*** 1
kequip .12*** .17*** 1
HT/K .17*** .09*** -.05** 1
R&Dlag .17*** .10*** -.02*** .25*** 1
OS narr .18*** .16*** .11*** .04*** .16*** 1

Notes: Annual data, 1958-2005, for 358 U.S. manufacturing sectors. Reported numbers are
pairwise correlation coefficients, controlling for sector and time fixed effects. Key: ***
significant at 1%; ** 5%; * 10%.

Table 3: Final production skills, input skill intensity, and controls. Dependent variable is h.

Input skill measure ——————- Baseline: σit ——————- σ2d
it

(1) (2) (3) (4) (5) (6)

Input skill intensity: 1.360*** 1.094*** .982*** .883*** .662*** .539***
(.162) (.100) (.163) (.159) (.119) (.167)

Equipment per worker: kequip -.0660 -.0498 -.0441
(.049) (.043) (.046)

Office equipment: OCAM/K .274 .145 .143
(.168) (.166) (.163)

High-Tech capital: Difference .483** .497** .571***
(HT/K −OCAM/K) (.191) (.192) (.184)
R&D intensity R&Dlag .650*** .742***

(.205) (.212)
Outsourcing: OSnarr .0888* .107**
(narrow) (.048) (.051)
Outsourcing (broad): difference .189*** .206***
(OSbroad −OSnarr) (.064) (.065)
Sector fixed effects no yes yes yes yes yes
Time fixed effects no no yes yes yes yes
Adjusted R2 .297 .950 .951 .954 .958 .957
R2 (within) - .379 .392 .429 .476 .459
Observations 17,184 17,184 17,184 17,184 16,633 16,633

Notes: Annual data, 1958-2005, for 358 U.S. manufacturing sectors. Clustered standard errors (by sector) in
parentheses. Key: *** significant at 1%; ** 5%; * 10%. All regressions are weighted by sectors’ average share
in manufacturing employment.
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Table 4: Final production skills, input skill intensity, and controls. Dependent variable is h.

Input skill measure ————————- σit ————————- σ2d
it

(1) (2) (3) (4) (5) (6)

Input skill intensity: σi 1.376*** .901*** .768*** .591*** .591*** .488***
(.185) (.120) (.147) (.118) (.118) (.188)

σi × It≥1980 -.0105 .0301** .162** .0561 .0561 -.00406
(.019) (.012) (.073) (.064) (.064) (.064)

Equipment per worker: kequip -.113 -.113 -.122
(.100) (.100) (.096)

kequip × It≥1980 .0584 .0584 .0716
(.093) (.093) (.088)

Office equipment: OCAM/K -.331 -.331 -.366
(.293) (.293) (.294)

OCAM/K × It≥1980 .538* .538* .544*
(.315) (.315) (.313)

High-Tech capital: Difference .258 .258 .202
(HT/K −OCAM/K) (.253) (.253) (.266)
(HT/K −OCAM/K)× It≥1980 .0803 .0803 .261

(.237) (.237) (.210)
R&D intensity R&Dlag 1.043*** 1.043*** 1.028***

(.307) (.307) (.302)
R&Dlag × It≥1980 -.394* -.394* -.285

(.230) (.230) (.224)
Outsourcing: OSnarr .0421 .0421 .0631

(narrow) (.056) (.056) (.060)
(OSbroad −OSnarr)× It≥1980 .0589 .0589 .0585

(.056) (.056) (.058)
Outsourcing (broad): difference -.0575 -.0575 -.0484
(OSbroad −OSnarr) (.144) (.144) (.141)

(OSbroad −OSnarr × It≥1980) .257* .257* .272**
(.138) (.138) (.132)

Sector fixed effects no yes yes yes yes yes
Time fixed effects no no yes yes yes yes
Adjusted R2 .297 .950 .952 .959 .959 .958
R2 (within) - .385 .404 .491 .491 .473
Observations 17,184 17,184 17,184 16,633 16,633 16,633

Notes: Annual data, 1958-2005, for 358 U.S. manufacturing sectors. Clustered standard errors (by sector) in paren-
theses. Key: *** significant at 1%; ** 5%; * 10%. All regressions are weighted by sectors’ average share in
manufacturing employment. It≥1980 is a dummy variable that equals one from 1980 onwards.
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Table 5: Input skill intensity with time-varying input shares. Dependent variable is hit.

Input skill measure σit σ2d
it Sit

(1) (2) (3) (4) (5) (6)

Input skill intensity
Skill component: σit / σ2d

it .915*** .586*** .651*** .325**
(.182) (.130) (.202) (.161)

Input mix component: τit / τ 2d
it .177* .0906 .0571 -.0163

(.099) (.078) (.090) (.077)
Covariance component: ρit / ρ2d

it .627** .427* .474* .279
(.255) (.227) (.270) (.248)

All together: Sit = σit + τit + ρit .396*** .216***
(.110) (.077)

Control variables no yes no yes no yes
Sector fixed effects yes yes yes yes yes yes
Time fixed effects yes yes yes yes yes yes
Adjusted R2 .959 .964 .955 .962 .956 .963
R2 (within) .433 .504 .383 .485 .401 .491
Observations 2,806 2,806 2,806 2,806 2,806 2,806

Notes: Quinquennial data, 1967-2005, for 358 U.S. manufacturing sectors. Clustered standard errors (by sector) in paren-
theses. Key: *** significant at 1%; ** 5%; * 10%. All regressions are weighted by sectors’ average share in manufacturing
employment. Control variables include: Equipment per worker (kequip), office and computer capital (OCAM/K), non-
computing high-tech capital (HT/K − OCAM/K), R&D intensity (R&Dlag), and the broad and narrow outsourcing
measures (OSnarr and OSbroad −OSnarr).
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Table 6: Robustness analysis – I. Dependent variable is h.

Input skill measure σ σw σ2d

(1) (2) (3)‡ (4) (5) (6)
5-year Additional Wage 1967 1992 2002

changes Controls bill only only only

Input skill intensity: σ / σ2d / σw .609*** .579*** .535*** .513** .492*** .488***
(.108) (.142) (.177) (.260) (.123) (.169)

Equipment per worker: kequip - .0412 -.0973* -.176*** .15 .073 - .0261
(.033) (.055) (.064) (.345) (.114) (.087)

Office equipment: OCAM/K .057 .228 0.125 3.714*** 4.376*** .950*
(.112) (.184) (.242) (1.253) (.513) (.490)

High-Tech capital: difference .0778 .459** .554** 3.829*** 2.206*** 2.962***
(HT/K −OCAM/K) (.092) (.182) (.242) (.931) (.518) (.689)

R&D intensity R&Dlag .172** .419** .440** 1.817* - .13 .655*
(.070) (.178) (.187) (1.058) (.360) (.340)

Outsourcing: OSnarr .0568** .132*** .111* -.558** .0701 .0493
(narrow) (.026) (.045) (.061) (.281) (.099) (.107)

Outsourcing (broad): difference .104** .203*** .186** - .0332 .0584 .105
(OSbroad −OSnarr) (.042) (.071) (.075) (.561) (.126) (.145)

Many inputs: Ini>n̄
i .00257 .00722 .0352*** .00291

(.004) (.023) (.013) (.017)
Input variety: (1−Hi) .00407 - .131 .028 - .00333

(.016) (.090) (.037) (.056)
Relative wage: ln(wH/wL) -.0474**

(.020)
Real shipments: ln(Y ) .00238

(.005)
Productivity: ln(TFP ) - .00585

(.009)
Value added share .0344

(.034)

Sector fixed effects no yes yes no no no
Time fixed effects yes yes yes no no no
Adjusted R2 .23 .96 .96 .27 .71 .66
R2 (within) .51 .52
Observations 2,448 2,789 2,806 329 357 358

‡ The dependent variable in (3) is the non-production wage bill share: hw ≡ wHH/(wHH + wLL).

Notes: Quinquennial data, 1967-2005 in columns (1)–(3). Robust standard errors in parentheses (for (1)–(3) clustered
by sector). Key: *** significant at 1%; ** 5%; * 10%. Regressions (1)–(3) are weighted by sectors’ average share
in manufacturing employment; (4)–(6) by the sector’s employment in the respective years 1967, 1992, and 2002. All
variables in (1) represent 5-year differences (in this case, R&D intensity is R&Dt −R&Dt−5.), while levels are used in
the remaining regressions.
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Table 7: Robustness analysis – II. Dependent variable is h.

Input skill measure ———- Baseline: σit ———- σ2d
it σw

it

unweighted 1967-92 Sector-specific time trends
(1) (2) (3) (4) (5)‡

Input skill intensity: σit / σ2d
it / σw

it .497*** .583*** .467*** .470*** .441***
(.121) (.148) (.143) (.171) (.157)

Control variables yes yes yes yes yes
Sector fixed effects yes yes yes yes yes
Time fixed effects yes yes yes yes yes
Adjusted R2 .923 .973 .985 .985 .980
R2 (within) .380 .570 .821 .820 .830
Observations 2,806 2,090 2,806 2,806 2,806

Notes: ‡ The dependent variable in (5) is the non-production wage bill share: hw ≡ wHH/(wHH+wLL).

Quinquennial data, 1967-2002, for 358 U.S. manufacturing sectors. Clustered standard errors (by sector) in
parentheses. Key: *** significant at 1%; ** 5%; * 10%. Regressions in columns 2-5 are weighted by sec-
tors’ average share in manufacturing employment. Control variables include: Equipment per worker (kequip),
office and computer capital (OCAM/K), non-computing high-tech capital (HT/K−OCAM/K), R&D
intensity (R&Dlag), and the broad and narrow outsourcing measures (OSnarr and OSbroad −OSnarr).

Table 8: Interaction of input skill intensity with input differentiation. Dependent variable is hit.

Sample ——– Full Sample ——– ——– Benchmark years ——–
Input skill measure σit σit σ2d

it σit σit σ2d
it

(1) (2) (3) (4) (5) (6)

Input skill intensity (β1): .0990 .0504 -.0249 .0645 .0808 -.108
σit / σ2d

it (.217) (.164) (.243) (.199) (.168) (.242)
Interaction w/ differentiation (β2): 1.800*** 1.303*** 1.254*** 1.649*** 1.080*** 0.977**
σit × κi / σ2d

it × κi (.374) (.310) (.458) (.363) (.357) (.453)
Implied coefficient: β̂ = β̂1 + β̂2κ̄ 1.084*** .763*** .661*** .967*** .672*** .426***
Controls no yes yes no yes yes
Sector fixed effects yes yes yes yes yes yes
Time fixed effects yes yes yes yes yes yes
Adjusted R2 .954 .956 .958 .961 .965 .964
R2 (within) .426 .490 .469 .468 .528 .511
Observations 17,184 16,633 16,633 2,864 2,806 2,806

Notes: Quinquennial data, 1967-2002 in columns 1 and 2; annual data, 1958-2005, in columns 3-5. Clustered standard
errors (by sector) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. All regressions and the mean κ̄ are weighted
by sectors’ average share in total manufacturing employment. Controls variables include: Equipment per worker (kequip),
office and computer capital (OCAM/K), non-computing high-tech capital (HT/K − OCAM/K), R&D intensity
(R&Dlag), and the broad and narrow outsourcing measures (OSnarr and OSbroad − OSnarr), as well as their interactions
with input differentiation: kequip ×κi, OCAM/K×κi, (HT/K−OCAM/K)×κi, R&Dlag ×κi, OSnarr ×κi, and
(OSbroad −OSnarr)× κi. Weighted average input differentiation is κ̄ = .547.
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Table 9: Estimating the size of ITSC. Dependent variable is ln (Hit/Lit)

Measure for input skill bias σA
it σA

it σA
it σA

it σA,2d
it σA,2d

it

(1) (2) (3) (4) (5) (6)

PANEL A: Full Sample
Input skill bias .684*** .327*** .223*** .106*** .135** .0867*

(.057) (.053) (.048) (.036) (.058) (.046)
[controls and FE listed below]

R2 .428 .946 .950 .966 .949 .977
R2 (within) - .390 .432 .736 .417 .735
Observations 17,184 17,184 16,633 16,633 16,633 16,633

PANEL B: Benchmark years
Input skill bias .709*** .268*** .149** .0774 .124 .161**

(.060) (.072) (.071) (.079) (.084) (.081)
[controls and FE listed below]

R2 .449 .959 .957 .987 .957 .988
R2 (within) - .421 .469 .819 .465 .821
Observations 2,864 2,864 2,806 2,806 2,806 2,806

Controls and FE – used in both panels
Control variables no no yes yes yes yes
Sector fixed effects no yes yes yes yes yes
Time fixed effects no yes yes yes yes yes
Sector time trends no no no yes no yes

Notes: Annual data, 1958-2005, in panel A; quinquennial data, 1967-2002 in panel B. Clustered standard
errors (by sector) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. All regressions are weighted
by sectors’ average share in total manufacturing employment. Input skill bias σA

it and σA,2d
it are calculated

as explained in section 3.5. Control variables include: Equipment per worker (kequip), office and computer
capital (OCAM/K), non-computing high-tech capital (HT/K−OCAM/K), R&D intensity (R&Dlag),
and the broad and narrow outsourcing measures (OSnarr and OSbroad −OSnarr).
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