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1 Introduction

In a wide variety of economic contexts, collections of single-object auctions are used to allocate

multiple imperfectly substitutable objects. One important example is government procurement

(e.g., highway construction): typically, each contract is allocated via its own sealed-bid auction, even

though contracts are likely to be substitutable for suppliers due to capacity constraints. Another

well-known example is the online auctioneer eBay, which uses the same single-object auction design

for goods with substitutes, such as used automobiles and event tickets, as it does for the one-of-a-

kind collectibles for which it was originally designed. Other examples include real-estate auctions,

wine auctions, timber auctions, and o�ine wholesale used-auto auctions.

This paper studies how such collections of single-object auctions �aggregate up� into what we

will call an auction market. We focus on two prominent market-design features: the timing of

the individual auctions, and the amount of information about the objects sold available to bidders

in the beginning of the game. The timing of the auctions can be either simultaneous, forcing

each bidder to choose which auction to participate in, or sequential whereby all bidders can easily

participate in every auction. There are many examples of sequential auction markets in the real

world, from government procurement to the way traditional auction houses like Sotheby's and

Christie's sell a particular lot of art. Simultaneous markets occur when multiple separate auction

markets compete with each other, or when the underlying sequence of auctions is disguised, such

as in eBay's new default sort of a consumer's search results. Interestingly, a market for one type

of object does not necessarily use the same timing everywhere. For example, wholesale used-car

auctions are also held sequentially at the Suwon market in Korea while they are held at least partially

simultaneously at the Manheim market in the United States. Real-world auction markets also di�er

in terms of the information available to bidders at the beginning of the market: both government-

procurement and art auctioneers provide detailed information about all of their upcoming auctions.

In contrast, industrial procurement auctions are often held with only an expectation of an uncertain

future opportunity for the suppliers to win another contract from a di�erent client. We show

that both sequencing the auctions and providing information about all objects sold enhances the
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expected allocative e�ciency of the market as a whole. We then show that the market with auctions

sequenced and information about future objects revealed, although not fully e�cient, in a certain

sense approximates full e�ciency.

Our model is simple: we consider two objects for sale to N ≥ 3 potential buyers, with each

sale conducted by a second-price sealed-bid auction. Bidders regard the two objects as imperfect

substitutes in the sense that they have di�erent private valuations of each object and unit capacity;

for example, a typical consumer buying a used automobile on eBay Motors values di�erent cars

di�erently and can garage at most one car. Our main technical contribution is a an equilibrium

characterization of the sequential auction with information about future objects revealed, general-

izing the analyses of Gale and Hausch (1994) to more than two bidders, and Milgrom and Weber

(2000) to imperfect substitutes. We show that this dynamic game has a symmetric pure-strategy

Bayes-Nash equilibrium. In this equilibrium, participants bid their value for today's auction less

a term that represents their expected surplus from tomorrow's auction�the opportunity cost of

winning today. The di�cult part of the equilibrium construction (and the reason we need to re-

strict attention to only two objects throughout the paper) is characterizing the expected surplus

function, which is surprisingly subtle in equilibrium. The issue is that today's winning bid conveys

information about the set of participating bidders in tomorrow's auction: since all bidders reduce

their bids today as a function of their values of tomorrow's object, losing to a lower bid today makes

higher competition tomorrow more likely. At the margin, each bidder therefore needs to assess the

opportunity cost of winning today not only as a function of his valuation of tomorrow's object, but

also as a function of the bid he submits today. Following Che and Gale (1998), we characterize

the equilibrium surplus function in terms of isobids�sets of bidder types that submit the same

�rst-round bid. The isobids of our game turn out to be well behaved, facilitating the analysis

of comparative statics and the allocative e�ciency of the auction. Surprisingly, the equilibrium

involves �rst-stage trade almost surely, a consequence of the informational content of winning the

�rst auction akin to the �loser's curse� (Holt and Sherman 1994, Pesendorfer and Swinkels 1997).

Having characterized the sequential auction with information about future objects revealed, we

next turn to results about its e�ciency relative to other auction-market designs. Our �rst e�ciency
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result shows that revealing future objects increases the ex-ante expected e�ciency of the sequence

of auctions. Speci�cally, we compare the sequential auction with information about future objects

revealed to a sequential auction with information about future objects hidden, �rst analyzed by

Engelbrecht-Wiggans (1994). When future objects are hidden, bidders know a second auction will

occur and know the distribution of potential valuations in the second auction, but they do not

yet know their own speci�c valuations. The reason why we might expect the information about

future objects to enhance e�ciency is that informed bidders allocate their demand better across

auctions: bidders with high values tomorrow can bid cautiously today, and bidders with low values

tomorrow can bid aggressively today. We �nd that there are always some realizations of bidder

values where revealing future objects lowers e�ciency, but revealing future objects is indeed good

for social welfare when averaged over all possible bidder valuations.1 Our proof utilizes a classic idea

from the theory of single-object auctions with entry, namely, that the expected individual surplus of

a participating bidder in a standard auction is equal to his expected contribution to social surplus

(McAfee and McMillan, 1987). In our sequential context, self-interested bidders shade their �rst-

round bids precisely by their conditional expectation of second-round individual surplus, which we

show is equal to their expected contribution to second-round social surplus. Thus, whenever the

winner of the �rst object is not the bidder who values it most, society is better o� in expectation

with that �highest valuation� bidder participating in the second auction instead.

Our second e�ciency result shows that regardless of information about the second object, se-

quencing itself increases the expected e�ciency of the collection of auctions. We compare the

sequential auction to an auction market in which multiple individual auctions are separated, forc-

ing each bidder to choose just one auction to participate in. For instance, imagine that the auctions

take place simultaneously in separate rooms. Intuitively, we expect sequencing to be good for ef-

�ciency because it allows bidders to participate in more auctions; any bidder who loses the �rst

auction can then participate in the second. As with the case of hidden future objects, it is always

possible to �nd realizations of bidder values where running the auctions simultaneously�hence

forcing bidders to choose ex-ante which one auction to participate in�actually increases allocative

1It is immediate that revealing private valuations increases e�ciency in a standard single-object auction. Moreover,
revealing valuations also increases seller revenue as long as there are at least three bidders (Board, 2009).
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e�ciency. But, in expectation, we show that this kind of marketplace congestion is always bad for

welfare.

Our last result shows that the sequential auction with future objects revealed is in a certain sense

approximately e�cient. More speci�cally, we show that the expected ine�ciency of the sequential

auction with future objects revealed is bounded above by the expected e�ciency gain associated with

adding one more bidder to the second auction. This bound is in the style of Bulow and Klemperer's

(1996) bound on the revenue gain from using an optimally set reserve price. An interpretation is

that the potential welfare gains from switching to a more sophisticated multi-object auction, such

as Vickrey Clarke Groves, are small in this environment.

The remainder of this paper is organized as follows. Section 2 presents the model. Section

3 characterizes the equilibrium of the sequential auction with information about future objects

revealed. Section 4 presents our three main results: on information, sequencing, and approximate

e�ciency. Section 5 concludes.

2 Model

The supply side of the market consists of two objects j = 1, 2 for sale. The value the seller of object

j derives from keeping her object is normalized to zero. The demand side of the market consists of

N ≥ 3 risk-neutral bidders indexed by i, each with unit capacity. Each bidder i's type is described

by a pair of private valuations for the two objects (xi,1, xi,2) with the valuations independent across

bidders. The unit-capacity constraint makes the two objects substitutes for each bidder; the pos-

sibility that xi,1 6= xi,2 makes the objects imperfect substitutes.2 The following assumption about

the joint distribution of (xi,1, xi,2) in the population of bidders is su�cient for all results in this

paper to hold:

2 For instance, the objects could be two di�erent used cars sold on eBay Motors, with xi,1 indicating i's value

for car 1, xi,2 indicating i's value for car 2, and the capacity constraint arising from i only having access to a single

parking space
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Assumption A1: For each bidder i and object j, valuation xi,j is drawn independently from a

continuous distribution Fjwith a bounded density fj and full support on a closed interval [Lj , Hj ]

for some Lj ≥ 0.

Observe that Assumption A1 allows for the two objects to have di�erent valuation supports,

which for instance, could represent a di�erence in the objects' quality. We need the independence-

across-objects part of the assumption to utilize existing results regarding bidding strategies in

sequential auctions with future information hidden (Engelbrecht-Wiggans 1994). Our main tech-

nical result (characterization of bidding strategies in sequential auctions with future information

revealed) relies on a substantially weaker assumption without independence across objects, we leave

the exposition of this more general assumption to the relevane subsection of the paper.

Taxonomy of auction markets aggregated from single-object Auctions

An auction market is a set of single-object auctions. For tractability, we focus on markets that sell

each object by a second-price sealed-bid auction without reserve.3

We consider a two-dimensional taxonomy of auction-market designs based on 1) the timing of

the individual auctions (sequential or separate), and 2) the information available to the bidders

about their private valuations of the objects at the beginning of the game (revealed or hidden). We

now de�ne and discuss these two dimensions of our taxonomy.

The �rst dimension of our taxonomy de�nes timing of the individual auctions. In sequential

auctions, j can be interpreted as a time index. All bidders participate �rst in auction 1, the winner

(if any) exits the market, and the remaining bidders then participate in auction 2.4 In separate

auctions, each bidder chooses which one auction to participate in; bidders are not allowed / able

to participate in both auctions. For instance, imagine that the auctions take place simultaneously

3In the context of eBay auctions, this assumption can be motivated by the fact that most bidding on eBay occurs
towards the very end of the auction (Roth and Ockenfels, 2001).

4Given our unit capacity assumption, the additional assumption that the winner of auction 1 exits the market is
most reasonable when disposal is costly or prohibited. For instance, the winner of a procurement auction may be
prohibited from transferring the contract, and resale of a used car bought on eBay is costly due to eBay fees and
other transactions costs.
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in separate rooms.5 The separate condition can be interpreted more broadly as a tractable device

for modeling an auction market in which there are obstacles to participating in multiple individual

auctions.

The second dimension of our taxonomy de�nes the information available to bidders at the

beginning of the game. When information is revealed, each bidder learns his valuation of both objects

in the beginning of the game before making any bidding or entry decisions. When information is

hidden, each bidder learns his valuation for object j only after entering the auction. Speci�cally:

in the sequential auction, bidder i learns his xi,1 before submitting his bid in auction 1, and his

xi,2only after auction 1 concludes but before submitting his bid in auction 2. In separate auctions,

bidder i learns his xi,j only after entering auction j. The hidden condition can be interpreted more

broadly as a modeling convention that captures that auction buyers know they will have future

opportunities to trade but are not yet sure of the exact details of these opportunities.

3 Bidding strategies

Table 1 shows the equilibrium bidding strategies βjfor each market design in the taxonomy, condi-

tioning on bidder i entering auction j. Not all bidders enter all auctions: in sequential auctions, the

winner of the �rst auction does not enter the second auction because of the unit capacity constraint

and costly disposal (see footnote 7). In separate auctions, each bidder enters only one auction by

construction. The choice-of-auction stage of the separate auction markets with information revealed

raises an interesting coordination problem whereby each bidder wants to both enter an auction for

which he has a high valuation, but also an auction that other bidders do not want to enter. As

with any coordination game, the choice stage thus has multiple equilibria. Our e�ciency ranking

results will be valid for any perfect Bayesian Nash equilibrium of the entry game. Therefore, we do

not explicitly analyze the equilibria of the choice-of-auction stage.

5One real-world example is Manheim - the dominant U.S. auctioneer of used cars - which conducts auctions in
several physical �lanes� simultaneously (Tadelis and Zettelmeyer 2015).
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Table 1: Bidders' information about their valuations at the beginning of the game

Bidding strategies Hidden Revealed

Separate
βj (xi,j) = xi,j βj (xi,j) = xi,j

Timing (Vickrey 1961) (Vickrey 1961)

of the

Sequential

β1 (xi,1) = xi,1 −
´H2

L2

´ x
L2

(x− z) dFN−2
2 (z) dF2(x) β1 (xi,1, xi,2) = xi,1 − S (xi,2, β1 (xi,1, xi,2))

auctions β2 (xi,2) = xi,2 β2 (xi,2) = xi,2

(Engelbrecht-Wiggans 1994) (New result, Theorem 1)

In all but one market design in our taxonomy, the bidding strategies are standard results: the

separate auctions are isolated from each other, so bidding one's valuation is a dominant strategy

(Vickrey, 1961). For the same reason, the losers of the �rst auction (j = 1) in any sequential

setting bid their valuations xi,2 in the second auction. The dominant strategy in the second stage

means that information disclosure at the end of the �rst auction does not in�uence bidding in the

second auction.6 The �rst-round bidding strategy in sequential markets with information hidden

is slightly more involved: since the bidders do not know their own valuations of the second object

at the time of bidding in the �rst auction, they share common knowledge that if they lose the �rst

auction, they will bid their value xi,2 ∼ F2 in the second auction. Therefore, all bidders expect

the same continuation surplus Exi,2

[´ xi,2

L2
(xi,2 − z) dFN−2

2 (z)
]
should they lose the �rst auction.

Engelbrecht-Wiggans (1994) shows that under our assumption A1, it is an iterated conditional

dominant strategy equilibrium for bidder i to bid her valuation xi,1 net of this expected surplus in

the �rst auction as shown in Table 1. We now turn to characterizing the �rst-stage bidding strategy

in sequential markets with information revealed.

3.1 Bidding in sequential auctions with information about future objects

revealed

The received theory of sequential auctions for substitutes focuses either on auctions of several

identical units of a good (Milgrom and Weber 2000, Black and de Meza 1992, Katzman 1999),

on auctions of heterogeneous goods without information about future goods (Engelbrecht-Wiggans

6The second-stage bidding is the same regardless of whether the bidders learn nothing, only the price, or all the
bids of the �rst stage. This is the principal simpli�cation relative to the �rst-price sealed-bid format, where disclosure
of �rst-stage bids matters (Reiÿ and Schöndube 2008, Bergemann and Horner 2010).
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1994), on the special case with only two bidders and two stochastically equivalent objects (Gale and

Hausch 1994), or on vertically di�erentiated goods (Beggs and Graddy 1997). Our main technical

contribution extends the theory to N ≥ 3 bidders and two arbitrary objects. Speci�cally, our char-

acterization works not only under assumption A1, but even when for each bidder's pair of valuations

is drawn independenlty from any joint distribution F with full support and a bounded density on a

closed and bounded rectangle 7 Under this more general assumption, we �nd there always exists a

pure-strategy bidding equilibrium with mostly intuitive properties. Throughout the paper, we will

use the following extension of notation to indicate the probability mass under a continuous curve

in the support of F :

De�nition (mass under a curve): For a continuous curve ψ : [L2, H2] → [L1, H1] , let

F (ψ, z) ≡
´ z
L2

´ ψ(x2)

L1
f (x1, x2) dx1dx2.

Consider a focal bidder(x1, x2), where we suppress the bidder subscript for clarity. We restrict

our attention to symmetric equilibria in pure strictly monotone strategies, where strict monotonic-

ity of a bidding strategy is de�ned as follows:

De�nition (strict monotonicity): A bidding strategy β1 (x1, x2) is strictly monotone when

it is increasing in x1 for every �xed x2 ∈ [L2, H2].

When bidding in the �rst auction, the focal bidder needs to consider his continuation payo�

should he lose the �rst auction. As in the Sequential&Hidden markets discussed above, participa-

tion in the second stage yields a non-negative expected continuation surplus to the losers of the

�rst stage. We denote this surplus S. Unlike in the Sequential&Hidden markets, the continuation

surplus in Sequential&Revealed markets depends on both pieces of private information known at

the time of bidding. The dependence on x2 is direct and obvious: higher x2 implies a higher chance

of winning the second auction as well as a higher surplus conditional on winning. The dependence

7Under the assumption A1, F (x1, x2) = F1 (x1)F2 (x2)
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on x1is indirect via the �rst-auction bid-level, and it arises because the continuation payo� to losers

of the �rst auction is endogenous to their �rst-auction bidding strategies in equilibrium: since all

bidders reduce their bids today as a function of their values of tomorrow's object, losing to a lower

bid today makes higher competition tomorrow more likely. At the margin, each bidder therefore

needs to assess the opportunity cost of winning today not only as a function of his valuation of

tomorrow's object, but also as a function of the bid he submits today. We now make this intuition

about properties of the equilibrium continuation surplus precise by �rst postulating a particular

parametrization of the continuation payo�, and then showing a unique pure-strategy equilibrium

with such a structure of the continuation payo� exists.

De�nition (�rst-order regularity): Let S (x2, w1) represent the expected continuation

surplus to a loser of the �rst stage who values the second object x2 and loses the �rst auc-

tion to another bidder's winning bid w1. We call such a function �rst-order regular when when

S (x2, L1) = 0, S is continuous, and S does not decrease in w1 weakly faster than unity, i.e.

S (x2, d)− S (x2, c) > (−1) (d− c) for every d > c.

Given any �rst-order regular S (x2, w1), consider a focal bidder(x1, x2) who believes the highest

bid of his �rst-auction opponents h1 is distributed according to some continuous distribution G on

[0, H1], and who also believes his continuation payo� should he lose to a winning bid w1is S (x2, w1)8

. Such a bidder solves the following problem in the �rst auction:

β1 (x1, x2) = argmax
b


bˆ

0

(x1 − h1) dG (h1) +

H1ˆ

β

S (x2, h1) dG (h1)

 (1)

When the S function is �rst-order regular, the following �rst-order condition characterizes the

bidder's best response9:

8Note that it is not immediately obvious that an equilibrium S will satisfy these conditions. For example
S(x2, L1) = 0 seems counter-intuitive at �rst because a bidder with x2 = H2 wins the second auction almost
surely. We show later that there is a symmetric pure-strategy equilibrium that satis�es all these conditions.

9 Please see the appendix for detailed analysis of why �rst-order regularity is su�cient. The argument is straight-

forward and relies on the Intermediate Value Theorem
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β1 (x1, x2) = b such that b = x1 − S (x2, b) (2)

The best response function in equation 2 is intuitive given the truth-revealing property of the

second-price auction: the bidder bids her value of the �rst object net of the opportunity cost of

winning, where the opportunity cost of winning the �rst auction is not being able to participate in

the second auction. Equation 2 says that when evaluating the option value of the second auction

should he lose, the bidder should bid as if he would lose in a tie. In other words, he should assume

to be pivotal to the outcome of the �rst auction. This is the only situation in which changing

his �rst bid slightly changes the outcome of the game, and S (x2, b) is thus the opportunity cost

relevant at the margin.

To see why the magnitude of the �rst-auction winning bid w1is informative about the continua-

tion payo� in a symmetric pure-strategy equilibrium, suppose all bidders bid according to equation

2. Since the competitors' �rst-auction bids are in�uenced by their (already revealed) valuations of

the second good, knowing that all competitors remaining in the game bid less than w1 is informative

their values for the second item. Therefore, w1 is informative about the intensity of competition

in the second auction. In a Bayes-Nash equilibrium, the beliefs summarized by S must be cor-

rect given the �rst-stage bidding strategyβ1, and vice versa. The resulting equilibrium restriction

is most parsimoniously characterized with isobids� sets of valuation pairs that submit the same

�rst-round bid in equilibrium:

De�nition (isobid): Isobid for bid-level b is a function Ib (x2) : [L2, H2] → R such that

β1 (Ib (x2) , x2) = b for all x2 ∈ [L2, H2].

Given the above de�nition of an isobid, the following proposition describes the equilibrium re-

striction on �rst-auction bidding in strictly monotone strategies:
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Proposition 1: For every b > 0, an isobid of a symmetric pure-strategy Bayesian Nash equi-

librium in strictly monotone strategies must satisfy:

Ib (x2) = b+

x2ˆ

L2

(
F (Ib, z)

F (Ib, H2)

)N−2

dz (3)

We include the proof of Proposition 1 in the main body of the paper because the concept of an

equilibrium isobid is central to our equilibrium and its properties.

Proof of Proposition 1: Note �rst that bidding that satis�es equation 2 implies the following

form of the isobid for bid-level b:

Ib (x2) = b+ S (x2, b) (4)

Consider a focal bidder (x1, x2) who loses the �rst auction to a �rst-stage winning bid of magni-

tude b :w1 = b. The winner of the �rst stage (who submitted the w1 bid) exits the market, leaving

N − 2 surviving competitors who also lost the �rst auction along with the focal bidder. Assume

the surviving competitors all follow the same strictly monotone bidding strategy β1characterized

by equations 2 and 4. Strict monotonicity of bidding strategy β1 implies that the valuation of each

surviving competitor i satis�es x1,i < Ib (x2,i); that is, the competitors have valuations (x1,i, x2,i)

below the isobid Ib. This information can be used to derive the cumulative distribution function

of a surviving competitor's valuation of the second object as follows: the probability the surviving

competitors i's valuation for the second object x2,i is below some level z is the ratio of the f prob-

ability mass below Ib (x2) and to the left of z, and the entire f probability mass under the isobid

Ib (x2):

Pr (x2,i ≤ z | w1 = b) =

´ z
L2

´ Ib(y2)

L1
f (y1, y2) dy1dy2´H2

L2

´ Ib(y2)

L1
f (y1, y2) dy1dy2

=
F (Ib, z)

F (Ib, H2)

Fig1
=

´
X
f (w) dw´

X+Y
f (w) dw

, (5)

where X and Y are the pertinent areas under the isobid illustrated in Figure 1.

The probability distribution Pr (x2,i ≤ z | w1 = b) and independence across bidders in turn imply
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the expected continuation surplus S (x2, b) the focal bidder faces. Following a standard result in

auction theory, the expected surplus is simply the integrated probability of winning the second

auction:

S (x2, b) =

x2ˆ

L2

(x2 − z) dPrN−2 (x2,i ≤ z | w1 = b) =

x2ˆ

L2

PrN−2 (x2,i ≤ z | w1 = b) dx , (6)

where the second equality follows from integration by parts. Plugging equation 5 into equation

6 yields the expected continuation surplus of the focal bidder in terms of Ib (x2), and the result into

equation 4 yields the equilibrium restriction in equation 3. QED Proposition 1.

The intuition for Proposition 1 is that the isobid for bid-level b implies a belief about second-

stage competition, which in turn implies the isobid for the same bid-level b via the best reponses of

bidders who assume to be pivotal. In a pure-strategy Bayes-Nash equilibrium, the isobid must be

stable given the beliefs if generates. Note that considering isobids instead of directly solving for the

bidding function involves a useful dimension reduction: equation 3 shows that an isobid for each

bid level depends only on itself and not on the isobids for any other bid levels.

Proposition 1 implies a surprising property of any strictly monotone equilibrium, namely, that

β1 (x1, x2) ≥ L1 almost surely:

Corollary to Proposition 1: In any strictly monotone equilibrium, no bidder abstains from

the �rst auction, and no bidder submits a �rst-auction bid below L1.

We provide both a proof of the Corollary and an intuitive unraveling argument. Suppose a

strictly monotone equilibrium exists (which we will establish below under fairly general conditions).

Bids below L1 are ruled out because the dashed line in Figure 1 cannot satisfy the equilibrium con-

dition in Proposition 1: consider a bidder (L1, z
′) at the intersection of the dashed isobid curve of

some bid-level b′ < L1 and the lower boundary of the valuation support: if she is the pivotal bidder
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Figure 1: Illustration of an isobid

in the �rst auction, she is guaranteed to lose the second auction by encountering only stronger

competitors, so her best response to the dashed curve is to bid her true value x1 = L1, which

contradicts her being on the isobid curve for bid level b′ < L1. Thus, symmetric pure-strategy

equilibrium considerations alone restrict attention to �rst-round bids at or above the lower bound

of the support of x1.

If nobody bids below L1, who are the bidders bidding exactly the lower bound of the support

L1? The equilibrium condition in equation 3 implies that the equilibrium second-stage surplus

vanishes as the bid-level approaches L1, even when x2 = H2, and so the isobid for bid level L1

isobid is thus a constant function I = L1. This is counterintuitive because one single-agent best-

response thinking would suggest that x2 = H2has to imply a positive continuation surplus because

it guarantees a win of the second auction almost surely. So one would naively expect there to

be a bidder with x1,i > L1 and x2 = H2 on the IL1 (x2)isobid. Such an increasing L1 candidate

isobid unravels as follows: Suppose a focal bidder (x1, x2) with x1 > L1 who sits on the L1 isobid,
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(x1 = IL1 (x2) > L1), and who is thus conjecturing a positive expected surplus should she lose.

In this conjecture, the focal bidder is relying on a positive mass of other bidders (x1,i, x2,i) with

smaller but still non-minimum valuations L1 < x1,i < x1 & L2 < x2,i < x2 to also bid L1 or less

(Lj < xj,i is critical for a positive mass of such competitors). In a symmetric equilibrium, those

bidders(x1,i, x2,i) rely on other bidders with yet smaller but still non-minimum valuations to also

bid L1, all the way down to bidders arbitrarily near the point (L1, L2). But bidders on IL1
(x2)

su�ciently close to (L1, L2) realize they will lose the second auction almost surely because the

probability mass under IL1
(x2) and left of a small x2 is zero (since an equilibrium I must have

a slope and curvature of zero at L2). Therefore, the cascade unravels, the (x1,i, x2,i) ≈ (L1, L2)

competitors bid a small amount strictly greater than L1, and the original focal bidder thus also bids

strictly more than L1. Any pure abstention strategy unravels in an analogous fashion. See step 2C

in the Proof of Theorem 1 for a mathematically rigorous exposition of the unravelling argument.

To close the symmetric equilibrium construction, we need to show that the isobids de�ned by

Proposition 1 exist and imply a well-behaved expected surplus function. This is our main technical

result:

Theorem 1: For any joint distribution F (x1, x2) with full support and a bounded density on

a closed and bounded rectangle [L1, H1] × [L2, H2] ⊂ R2
+ and any number N ≥ 3 bidders drawn

independently from F , there is a unique symmetric pure-strategy Bayes-Nash equilibrium in strictly

monotone strategies with a continuous bidding function β1 (x1, x2) that satis�es:

• β1 (L1, x2) = L1 , β1 (x1, L2) = x1 and x1 > β1 (x1, x2) > L1 for all (x1, x2) > (L1, L2) ,

• β1 (x1, x2) is decreasing in x2 for all (x1, x2) > (L1, L2)

The equilibrium can be characterized by a unique set of equilibrium isobids {Ib (x2)}H1

b=L1
, each of

which satis�es equation 3. The equilibrium isobids imply a unique equilibrium expected surplus

function S (x2, w1) = Iw1
(x2)−w1, which is �rst-order regular. In terms of S, the bidding function

β1 (x1, x2) satis�es β1 (x1, x2) = x1 − S (x2, β1 (x1, x2)).
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We construct the equilibrium in two steps: First, the full support and boundedness of the joint

density imply that for every b ∈ (L1, H1]

, auniquefunctionIexiststhatsatisfiesequation3.TheIfunctionisacandidateforanisobidcurveIb (x2)

10 Second, we show that the candidate surplus function S (x2, w1) = Iw1 (x2) − w1 implied by the

candidate isobids is �rst-order regular, and so equation 2 thus characterizes the best response to the

candidate surplus function. The last part of the proof con�rms that the resulting bidding function

is increasing in x1, so the candidate isobids are indeed the equilibrium isobids of a strictly monotone

equilibrium.

The most seemingly counter-intuitive property of the equilibrium is highlighted by the above

Corollary to Proposition 1: all bidders bid at least L1, regardless of their x2. One way to understand

the bidding incentives is to consider the informational content of losing the �rst auction to a low

winning bid w1. Since losing to a lower bid today makes higher competition tomorrow more likely,

the �rst auction involves a �loser's curse� (Holt and Sherman 1994, Pesendorfer and Swinkels 1997) in

that a failure to anticipate the informational content of winning makes one bid too low. Speci�cally,

ignoring the information about tomorrow's competition contained in winning with very low bid

today would make some bidders bid very low, only to be surprised tomorrow at the intensity of

competition.

The �rst step of the proof (existence and uniqueness of candidate isobids) relies on showing that

a K-times repetition of the mapping on the space of functions de�ned by the RHS of equation 3 is

a contraction mapping, so there is a natural numerical method for computing isobids:

Corollary to Theorem 1 : numerical procedure for computing β1 (x1, x2)

The following steps can be used to numerically approximate β1 (x1, x2) on a grid:

1. Starting with b = H1 and proceeding in small steps of size δ, compute the equilibrium Ib (x2)

for a set of b ∈ {L1, L1 + δ, L1 + 2δ, ...,H1} by iterating equation 3, starting with Ib+δ (x2).

10 The fact that the distribution F has a bounded density is important for the existence of candidate isobids; the

construction may fail for distributions with atoms or for discrete distributions.

16



2. Construct equilibrium S (x2, w1) by subtracting w1 from Iw1 (x2).

3. Solve for β1 (x1, x2) approximately on a grid using equation2.

The �rst step makes use of continuity of I in b to initialize each set of iterations. Starting with

b = H1 is e�cient because isobids for high values of b have greater mass of f underneath, so their

mapping contracts faster (see proof of Step 1 of Theorem 1).

4 E�ciency bounds and rankings

Having characterized the equilibrium bidding in a Sequential&Revealed market, we now turn to

our e�ciency ranking results. We present two sets of results: First, we show that the Sequen-

tial&Revealed market generates greater expected surplus than any other market format in our

taxonomy. Second, we show that the Sequential&Revealed market in a certain sense approximates

full e�ciency. Both sets of results rely on our workhorse �nding that the Sequential&Revealed mar-

ket is more e�cient than the greedy allocation, de�ned as follows:

De�nition: The greedy allocation assigns the �rst object to the bidder i with the highest xi,1,

and assigns the second object to the bidder with the highest xi,2 among the remaining bidders.

Theorem 2: For any joint distribution F (x1, x2) with full support and a bounded density on

a closed and bounded rectangle [L1, H1]× [L2, H2] ⊂ R2
+ and any number N ≥ 3 bidders drawn in-

dependently from F , the unique strictly monotone symmetric pure-strategy Bayes-Nash equilibrium

of the sequential auction with future objects revealed generates greater expected social surplus than

the greedy allocation.

Proof of Theorem 2: The distributional assumption is needed to guarantee existence of the

equilibrium, see Theorem 1. The rest of the proof exploits the properties of equilibrium isobids.

Let A be the bidder with the highest value for good 1, B be the bidder with the highest bid in

the �rst auction, and let z be the maximum xi,2 among all bidders other than A and B. Let B's
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bid-level (i.e. the highest bid level) in the �rst auction be b ≡ β1 (xB,1, xB,2), and let the A's

bid-level be bA ≡ β1 (xA,1, xA,2). Note that z is the maximum xi,2 of N − 2 bidders, each of whom

has (xi,1, xi,2) under the isobid for the bid level b: β1 (xi,1, xi,2) < β1 (xB,1, xB,2)⇒ xi,1 < Ib (xi,2).

From equation 6, z is thus exactly the second-auciton competition bidder B expects at the margin

should he lose the �rst auction.

When A = B, the two allocations are the same. When A 6= B, the greedy allocation generates

social surplus ofWgreedy = xA,1+max (z, xB,2). In contrast, the sequential auction with information

revealed generates Wrev = xB,1 + max (z, xA,2).

We show that for every realization of (xA,1, xA,2) and (xB,1, xB,2), Ez (Wrev −Wgreedy|xA,1, xA,2) >

0. Subtracting z from both surpluses, the di�erence between the realized social surpluses is

Wrev −Wgreedy = xB,1 − xA,1︸ ︷︷ ︸
loss in 1st auction

+ max (0, xA,2 − z)−max (0, xB,2 − z)︸ ︷︷ ︸
gain in 2nd auction

The greedy allocation always realizes more surplus in the �rst auction. However, the sequential

auction realizes more surplus in the second auction as long as xA,2 > xB,2, which is necessary

for bA,1 < bB,1 and xA,1 > xB,1 (A 6= B). Since z is the maximum of N − 2 bidders i with

xi,1 < Ib (xi,2), taking an expectation over z yields Ez [max (0, x− z)] = S
(
x, b
)
, where S is the

equilibrium expected surplus function characterized by Theorem 1. Therefore, the expectation of

the di�erence between surpluses is the (always-positive) di�erence between the isobids at xA,2:

Ez (Wrev −Wgreedy|xA,1, xA,2) > 0 = xB,1 − xA,1︸ ︷︷ ︸
loss in 1st auction

+S
(
xA,2, b

)
− S

(
xB,2 | b

)︸ ︷︷ ︸
expected gain in 2nd auction

= Ib (xA,2)−IbA (xA,2) > 0

where the last equality follows from the de�nition of an isobid. Please see Figure 4 for a graphical

illustration of this proof. QED Theorem 2.

Recall that the greedy allocation �rst sorts the bidders according to their valuations of the �rst

object, so the �rst auction in the sequence generates the maximum possible social surplus under

the greedy allocation. The intuition for Theorem 2 is that whenever the sequential auction with
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Figure 2: Illustration of Theorem 2: Sequential auction with information about future
objects revealed is more e�cient than the greedy allocation

information revealed changes the identity of the �rst-auction winner (and thus results in a loss

in e�ciency due to a lower x1 of the new winner), the second period more than compensates in

expectation: the person who would have received the second object under the greedy allocation must

have such a high x2 that his presence in the second auction increases expected social surplus. Note,

however, that the e�ciency comparison does not hold in realization: there always exist pro�les of

bidders types for which the greedy allocation is e�cient whereas the sequential auction with future

objects revealed is not (we provide an example of an ine�cient realization as part of the overall

discussion of our e�ciency ranking below).

When each bidder's valuations are independent across the two auctions, the Sequential&Hidden

auction market results in the greedy allocation. We thus have the following corollary to Theorem

2:

Corollary to Theorem 2: Under the distributional assumption A1 and for any number of bid-
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ders N ≥ 3, revealing information about future objects increases the expected e�ciency of sequential-

auction markets.

Theorem 2 implies that the e�ciency comparison between Sequential&Revealed and Sequen-

tial&Hidden generalizes at least to any environment in which Sequential&Hidden is greedy in equi-

librium, i.e. when its bidding strategy β1 (x1) is strictly monotonic, i.e. increasing in x1. Such a

property seems to be a general feature of bidding in the Sequential&Hidden market until one consid-

ers the impact of possible correlation between xi,1and xi,2within each bidder i. Such a correlation

e�ectively makes information about future valuations only partially hidden: bidders with di�erent

xi,1's will have di�erent beliefs about their xi,2's, and so every bidder i must condition his �rst-

round bid on his belief about xi,2, as well as on his belief about other losers' valuations x−i,2 on the

margin of �rst-round victory. Thus the elegant analysis of Engelbrecht-Wiggans (1994) no longer

goes through when xi,1and xi,2are correlated. We conjecture that bidding in Sequential&Hidden

markets is strictly monotonic even when xi,1and xi,2are arbitrarily correlated and drawn from a

joint distribution F that satis�es conditions of Theorem 1, but a formal proof eludes us. Our next

result indicates that sequencing itself enhances e�ciency:

Theorem 3: Under the distributional assumption A1, the unique strictly monotone symmetric

pure-strategy Bayes-Nash equilibrium of the Sequential Auction with information revealed generates

greater expected social surplus than does any Perfect Bayes-Nash Equilibrium of the Separate Auc-

tions.

Proof of Theorem 3: As in the Proof of Theorem 2, let B be the bidder with the highest

bid for good 1 in the Sequential&Revealed auction, let A be some other bidder, and let , and let

z be the maximum x2 among all bidders other than A and B. As in the Proof of Theorem 2, the
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expected social surplus in the in the Sequential&Revealed auction is:

Ez (Wseq) = xB,1+Ez (max (z, xA,2)) = xB,1+Ez (max (0, xA,2 − z) + z) = xB,1+SB (xA,2)+E (z)

(7)

We now analyze the expected social surplus in the separate auctions. There are two cases,

depending on realized entry into the �rst auction.

Case 1: At least one bidder enters auction 1

If B also wins the �rst object when the auctions are separated then the separate auctions

generate weakly less social surplus because the set of participants in the separated second auction

is a subset of the participants in a second auction in a sequence. Since the highest-xi,2 participating

bidder wins the second object in either equilibrium, separating the second auction must therefore

generate weakly less social surplus.

If B does not win the �rst auction when the auctions are separated, then Let A be the bid-

der who wins auction 1. The expected social surplus with the auctions separated is bounded by

assuming that all bidders other than A enter the second auction: Ez (Wsep) ≤ Bound (EWsep) ≡

xA,1 + Ez [max (0, xB,2 − z)] + E (z). We have shown in the Proof of Theorem 2 that Ez (Wseq) >

Bound (EWsep).

Case 2: No bidders enter auction 1

With all bidders in auction 2, the social surplus is the highest xi,2 from all N bidders. Let C

be the bidder with highest xi,2 other than xB,2: xC,2 = max
i 6=B

xi,2.With the auctions sequenced, the

social surplus is Wseq = xB,1 + xC,2, whereas the separate auctions yield Wsep = max (xC,2, xB,2)

in the present case. We show that conditional on any (xB,1, xB,2), EC (Wseq) > EC (Wsep).

Let ΦB,2 (x) be the cdf of a x2 drawn randomly from below the isobid for bid level bB,1. From

independence of valuations across bidders, Pr (xC,2 < z) = ΦN−1
B,2 (z). The di�erence between the

two expected social surpluses is

EC (Wseq)− EC (Wsep) = xB,1︸ ︷︷ ︸
sepworse in auction 1

− Pr
(
xC,2 < xB,2

)
EC

(
xB,2 − xC,2 | xC,2 < xB,2

)︸ ︷︷ ︸
sep only better in auction 2whenxC,2<xB,2

=
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= xB,1 −

xB,2ˆ

L2

(
xB,2 − x

)
dΦN−1

B,2 (x)

︸ ︷︷ ︸
surpluswith additional bidder

> xB,1 −

xB,2ˆ

L2

(
xB,2 − x

)
dΦN−2

B,2 (x)

︸ ︷︷ ︸
equilibriumsurplus

= bB,1 ≥ L1 ≥ 0

The �rst equality sign follows from the two relative orderings of xB,2 and xC,2: when xB,2 ≤ xC,2,

society is better o� by xB,1. When, on the other hand, xB,2 > xC,2, the social surplus di�erence

has an ambiguous sign and amounts to xB,1 −EC (xB,2 − xC,2 | xC,2 < xB,2). The second equality

sign highlights that the average Wseq −Wsep across the two orderings amounts to xB,1 minus the

di�erence between xB,2 and xC,2 whenever xB,2 > xC,2. The critical insight is that this di�erence

is of the same form as the equilibrium bidding function in equation 2, except the expected surplus

part considers N−1 rather than N−2 opponents (compare with equation 3). Since more opponents

imply smaller surplus, the �rst inequality follows, so the expected Wseq −Wsep di�erence exceeds

B's �rst-auction bid. Therefore, EC (Wseq) > EC (Wsep). QED Theorem 3.

Together with the trivial observation that sequencing increases e�ciency when information is

hidden, Theorems 2 and 3 indicate that the sequential auction with future objects revealed is the

most e�cient auction market in our taxonomy:

Summary of e�ciency rankings within the taxonomy: Under the distributional assump-

tion A1 and for any number of bidders N ≥ 3, the Sequential&Revealed auction market generates

greater expected social surplus than any other auction market in the taxonomy

Of course, the sequential auction with future objects revealed is not fully e�cient. With three

bidders and f uniform on the unit square, the worst-case e�ciency loss occurs when the bidder

values are about (1,0.99), (0,1), and (0.58, 0): the �rst bidder just loses the �rst auction to the last

bidder, resulting in 0.42 of squandered social surplus. Full e�ciency in our setting requires a multi-

object auction design, such as the Vickrey-Clarke-Groves auction. Our next result shows, however,

that although VCG avoids the worst-case scenario, the expected e�ciency gain of switching from

the sequential auction design to the VCG is in a certain sense small:
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Theorem 4: Under the distributional assumption A1 and for any number of bidders N ≥ 3,

• The ine�ciency of the Sequential&Revealed market is bounded above by the di�erence in

expected social surplus between an N bidder auction and an N − 1 bidder auction for the

second object held in isolation.

• The Sequential&Revealed market with N + 1 bidders generates greater expected surplus than

does the e�cient Vickrey-Clarke-Groves mechanism with N bidders.

Proof of Theorem 4: Let X
(k:n)
j denote the random variable given by the k-th highest of n draws

from Fj . Let WN
V CG denote the expected social surplus in the VCG mechanism with N bidders.

WN
V CG is bounded above by the expected social surplus in an economy without the unit-capacity

constraint, in which each object is allocated to the bidder who values it the most:

WN
V CG < E

(
X

(1:n)
1

)
+ E

(
X

(1:n)
2

)
.

Now let Wn
seq&rev denote the expected social surplus in a sequential auction with informa-

tion revealed and n bidders. Theorem 2 implies that Wn
seq&rev is bounded below by the greedy

allocation that awards the �rst object to the bidder who values it the most, but then excludes

that bidder from the second auction. Under assumption A1, the greedy expected surplus is:

Wn
greedy = E

(
X

(1:n)
1

)
+ E

(
X

(1:n−1)
2

)
, so Wn

seq&rev > E
(
X

(1:n)
1

)
+ E

(
X

(1:n−1)
2

)
. Combining the

above two bounds with n = N yieldsWN
V CG−WN

seq&rev < E
(
X

(1:N)
2

)
−E

(
X

(1:N−1)
2

)
. Combining

the above two bounds with n = N + 1 yields WN+1
seq&rev −WN

V CG > E
(
X

(1:N+1)
1

)
− E

(
X

(1:N)
2

)
.

QED Theorem 4.

The �rst part of Theorem 4 says that the ine�ciency of the entire two-auction sequence is less

than the e�ciency loss in the second auction, held in isolation, if N − 1 rather than N randomly

drawn bidders participated in it. This bound becomes tighter as the population variance in x2

decreases and/or as N increases. Intuitively, the less expected bidder surplus the second auction

provides, the more e�cient is the sequential auction with information revealed. The second part of

Theorem 4 says that a designer concerned about e�ciency would rather hold the sequential auction
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with information revealed than use VCG if the former attracts just a single additional bidder�for

example, due to its comparative simplicity. This bound is in the spirit of Bulow and Klemperer

(1996), who show in the single-object setting that the revenue bene�t of an optimally chosen reserve

price is smaller than the revenue bene�t of adding one more bidder to the game.

At present we have not been able to generalize Theorem 4 to setting A1. The issue is that when

values are correlated we cannot exploit the simple characterization of the greedy expected surplus

as Wn
greedy = E

(
X

(1:n)
1

)
+ E

(
X

(1:n−1)
2

)
. Instead, the best available bound on the greedy surplus

is Wn
greedy ≥ E

(
X

(1:n)
1

)
+E

(
X

(2:n)
2

)
which in turn implies a weaker ine�ciency bound when one

follows the proof technique of Theorem 4. Speci�cally, ine�ciency is bounded by the expected

di�erence between the top two valuations of the second object among N bidders.

Simulation results in Budish (2008) suggest that the ine�ciency of the sequential auction with

future-objects revealed is often substantially smaller than the Theorem 4 bound. For instance, if

there are three bidders with values for each object distributed uniformly on [0,1] then VCG achieves

expected social surplus of 1.45, whereas the sequential auction with future objects revealed achieves

expected social surplus of 1.44.

5 Conclusion

This paper studies how single-object auctions �aggregate up� into a multi-object auction mar-

ket. Such markets are especially prevalent in settings where there would be large coordination or

complexity costs associated with adopting a fully e�cient multi-object auction�for example, the

costs of coordinating multiple di�erent sellers on eBay or at Sotheby's. We identify two aspects

of such auction-market design that unambiguously increase expected marketplace e�ciency in our

model: First, the individual auctions should be conducted in a sequence; Second, the auctioneer

should reveal to the bidders in advance all information about the objects being auctioned. Besides

demonstrating that the sequential auction with future objects revealed is more e�cient than its

alternatives, we also show that its expected e�ciency is close to the e�cient social surplus. Specif-

ically, the market designer would rather run the sequential auction with future objects revealed
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than run a fully e�cient mechanism but lose one bidder. Together, our results help explain the

prevalence of the sequential auction with future objects revealed in practice.

Sequencing auctions and revealing future objects both seem like obvious design decisions in the

context of auction markets for substitutes. Both practices have long been standard, for instance,

at the classic auction houses Sotheby's and Christie's. Yet many real-life auction markets fail

to do one or both of these things. For instance, the now-defunct Amazon and Yahoo auction

marketplaces used soft-close ending times, meaning an auction ends only after some time elapses

without a new bid (Roth and Ockenfels, 2001). This design made it di�cult for bidders to guess

which of two auctions would end �rst, and hence di�cult to participate in both. Google Base's

auctions�also defunct�were sorted by search-term closeness-of-�t rather than by ending time,

making identifying, let alone participating in, the full sequence di�cult for bidders. Moving against

our e�ciency result, in 2008 eBay switched from sorting auctions strictly by ending time (�Ending

Soonest�) to a sort order based on a variety of features (�Best Match�); interestingly, eBay appears

to have at least partly switched back in some product categories.11 Large wholesale car auctions

in the United States often conduct several auctions concurrently, each in a separate �lane� (Tadelis

and Zettlemeyer, 2015). Perhaps the starkest example of a non-sequential auction is that run by

the event-ticket marketplace StubHub in 2006. The auction was for all of the tickets to a single

event, with the tickets sold in pairs.Its single-object auction design was similar to eBay's, but the

individual auctions all had identical hard-close ending times, and as a consequence its performance

was poor.12 Auctions at charity bene�ts are often organized similarly to StubHub's, which might

explain why the �nal moments of so-called �silent auctions� are often anything but.

Perhaps the starkest example of a sequential auction with future objects hidden is that described

by Engelbrecht-Wiggans (1994), in which future items in an equipment auction are hidden behind

11We searched for event tickets and cars on eBay in June 2011. In the event tickets category (e.g., search term
�U2 Tickets�), the default �Best Match� display sorted upcoming auction listings in strict order of ending time. In
the automobiles category, the default �Best Match� display seemed to place little weight on auction ending time.
For instance, for the search terms �Ford F150� and �Toyota Corolla�, we found that in 78 percent of our searches
(conducted once per day for one week), at least one of the three auctions ending soonest was not shown in the top
25 �Best Match� listings. In 42 percent of the searches, none of the three was.

12The StubHub auction's average selling price was $50 per ticket, versus a $148 average aftermarket value for
tickets for that particular tour. Some of the StubHub auctions closed at prices as low as $3 per ticket. Neverthe-
less, StubHub's CEO described the auction as a �successful experiment in true dynamic pricing.� See Cohen and
Grossweiner (2006).
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a curtain until their turn for sale. The �eld experiment reported by Tadelis and Zettlemeyer

(2015) relates to improving the disclosure of information about objects in the sequence, speci�cally

releasing more information about automobiles' quality condition. Some gimmicky online auction

sites with very short auction durations (e.g., Bidz.com) seem to purposefully suppress information

about future objects for sale.13 One could also interpret the non-sequential sort used by Google

Base and eBay's �Best Match� as obscuring information about the full set of objects for sale.

A limitation of our analysis is that it focuses on the case of just two auctions and a �xed set of

bidders. It would be desirable to allow for a longer (perhaps in�nite) sequence of auctions, and to

allow bidders to arrive and depart from the market at di�erent times. Unfortunately, such analysis

quickly becomes intractable due to the asymmetry and learning issues �rst raised in the seminal

paper of Milgrom and Weber (2000);14 as is clear from our characterization in Section 3, even the

case of two auctions and a �xed set of bidders is quite involved. Our intuition is that our e�ciency

results would be robust to longer sequences, but this remains conjecture.

We close by noting an interpretation of our analysis that suggests a fruitful direction for future

research. In the context of online marketplaces (cf. Levin, 2011), sequencing auctions and revealing

future object information can be interpreted as aspects of what e-commerce �rms call user-interface

design. Surely there are other elements of user-interface design that have an important impact

on market performance: helping users search for objects e�ciently; helping sellers describe their

objects e�ectively; reducing the transactions costs, for example, measured in user time, associated

with performing various actions in the marketplace; and so on. Our paper perhaps represents a

�rst foray into the economic analysis of this important aspect of online market design.

13On Bidz.com, �auctions start at $1 every 5 seconds!� The company has been accused of fraud and faced numerous
other di�culties (Miniter, 2008).

14Suppose we have three auctions instead of only two, with each bidder having private single-item valuations
(x1, x2, v3) (x1, x2, v3), and suppose further that only the winner and the price p1 of the �rst unit are revealed before
the second stage. Then second-stage bidders have asymmetric beliefs about the v3 of the remaining competitors,
because one of the remaining bidders bid exactly p1, whereas the other bidders bid strictly below p1. Even when this
asymmetry is resolved by revealing all �rst-stage bids, as suggested by Milgrom and Weber (2000), the information
about future goods would make it necessary to explicitly model second-stage beliefs about v3: �rst-stage bids would
be a function of v3, and bidders thus may have an incentive to mislead their competitors into thinking their v3 is
very high by bidding very low in the �rst stage. Furthermore, the price p1 would enter second-stage bids, so the
last two auctions do not reduce to the environment studied here. Thus, even with just three auctions it is unclear
whether there exist intuitive pure-strategy equilibria.
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Appendix

Claim: When S is �rst-order regular, the FOC condition in equation 2 characterizes the best

response function to S.

Proof: To see that the β1 (x1, x2) is well de�ned by the FOC, note that S (x2, d)− S (x2, c) >

(−1) (d− c) implies the RHS of equation 2 does not increase in β weakly faster than unity. S (x2, L1) =

0 �xes the intercept of the RHS at x1 − S (x2, L1) = x1 ≥ L1. Since the LHS of equation 2 is an

identity function, continuity of S in b implies (via the Intermediate Value Theorem) that the RHS

must eventually intersect the LHS at some b ≥ L1 that solves equation 2. Such a solution is

unique because the slope of x1−S (x2, b) in b is less than unity everywhere, so a second intersection

is impossible. Please see Figure below for an illustration: The solid diagonal line is the LHS of

equation 2. The two dashed lines illustrate two possible RHS of equation 2: the lower dashed line

corresponds to S increasing in bid-level; the upper dashed line corresponds to S locally decreasing

in bid-level, but slower than unity.

Figure 3: The bidding function is well de�ned by the �rst-order condition

It remains to be shown that β1 (x1, x2) is the best response to S. The objective function shown
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in equation 1, which we will denote as Π (b | x1, x2, S), is concave at the FOC when S does not

decrease in b faster than unity. To see this, let bFOC be the value of b implied by the FOC. When

S is partially di�erentiable, the SOC is d2Π
db2 |b=bFOC

= −1 − ∂S
∂b |b=bFOC

< 0 ⇐⇒ ∂S
∂b |b=bFOC

> −1.

When S is not partially di�erentiable, S (x2, d)−S (x2, c) > (−1) (d− c) is su�cient for concavity of

Π (b | x1, x2, S) at the FOC. However, Π (b | x1, x2, S) may not be globally concave. We have shown

above that the solution to the FOC is unique, so the only candidates other than bFOC for a true

global best response are b = 0 and b = x1. It is obvious Π (bFOC | x1, x2, S) > Π (x1 | x1, x2, S).

The single crossing property outlined above also shows that b = 0 or even abstaining from the

�rst auction cannot be a pro�table deviations from bFOC either. Suppose N − 1 competitors bid

according to β1, and a bidder i deviates to an abstention instead of bidding Bi ≡ β1 (x1,i, x2,i).

The only way such a deviation can make any di�erence in the outcome of the game is if the focal

bidder i would have won the �rst auction, that is, if Bi > h1 where h1 is the highest opponent

bid as in equation 1. For Bi > h1, the deviation thus yields the expected second-stage surplus of
´ Bi

0
S (x2,i, h1) dG (h1) instead of

´ Bi

0
(x1,i − h1) dG (h1) available from bidding Bi. But the pro�t

from the deviation must be lower, because x1,i − b > S (x2,i, b) for all b < Bi. QED Claim.

Proof of Theorem 1

We construct the equilibrium in two steps:

1. The full support and boundedness of f imply that for every b ∈ (L1, H1]

, auniquefunctionIb exists that satis�es equation 3. This function is a candidate for an isobid

curve Ib (x2).

The set of candidate isobids Ib (x2) for all b ∈ (L1, H1] implies a candidate surplus function

S (x2, w1) = Iw1
(x2) − w1. The full support and boundedness of the joint density f , together

with the properties of the candidate isobids implied by equation 3 ensure that the candidate sur-

plus function is �rst-order regular, so there is a unique best response function de�ned implicitly by

β1 (x1, x2) = x1 − S (x2, β1 (x1, x2)), which is strictly monotone.

It is easy to show that the bidding function is increasing in x1,so the candidate isobids from Step

1 are indeed equilibrium isobids of a pure strategy Bayes-Nash equilibrium in strictly monotone
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strategies.

Step 1: Existence and uniqueness of candidate isobids

Claim 1: For each b ∈ (L1, H1], there exists a unique nondecreasing 1-Lipschitz function

Ib (x2) : [L2, H2]→ [b, b+H2 − L2] with I (L2 | b) = b such that Ib = T (Ib; b) where T is a function

in the space of functions parametrized by b, and de�ned by the RHS of equation 3: T (J ; b) (x2) =

b+
´ x2

L2

(
F (J,z)
F (J,H2)

)N−2

dz

Proof: Fix any b ∈ (L1, H1) and denote the global bound on f by f . Let Ψ be a set of

nondecreasing 1-Lipschitz functions I : [L2, H2] → [b, b+H2 − L2] such that I (L2) = b: Ψ =

{I : [L2, H2]→ [b, b+H2 − L2] , I (L2) = b,∀x > y, 0 ≤ I (x)− I (y) ≤ x− y}. Ψ is a closed subset

of the complete metric space of all bounded continuous functions from [L2, H2] to [0, H1 +H2 − L2]

with the supremum metric d (I, J) = max
x∈[L2,H2]

|I (x)− J (x)|, so it is itself a complete metric space

with the same metric. It is immediate from equation 3 that T projects Ψ into itself: T : Ψ→ Ψ .

The remainder of the proof shows that for every b ∈ (L1, H1), a K ≥ 1 exists such that TK (I; b)

is a contraction map. That is, a q < 1 exists such that d
(
TK (I; b) ,TK (J ; b)

)
< qd (I, J) for all

I, J ∈ Ψ. By the Banach Fixed Point Theorem, this is enough to show that T has a unique

�xed point in Ψ, and iterations of T starting at any point in Ψ converge to the unique �xed point

exponentially fast. The unique �xed point is the unique candidate isobid Ib (x2). It is enough

to consider N = 3, because d (T (I; b) ,T (J ; b)) decreases in N (exponentiating the probability in
´ x2

L2
PrN−2 (...) dz by the (N − 2) reduces T (I; b) as N increases and the same is true for T (J ; b),

so d (T (I; b) ,T (J ; b)) decreases in N).

Pick any distance δ > 0 and any I ∈ Ψ, and consider the following bound on how far apart

T (I) and T (J) can be pointwise:

|T (I; b) (x2)− T (J ; b) (x2)| =

∣∣∣∣∣∣
x2ˆ

L2

[
F (I, z)

F (I,H2)
− F (J, z)

F (J,H2)

]
dz

∣∣∣∣∣∣

(I>b)
< F−1

1 (b)

∣∣∣∣∣∣∣
x2ˆ

L2

zˆ

L2

I(y2)ˆ

J(y2)

f (y1, y2) dy1dy2dz

∣∣∣∣∣∣∣
(f<f)&(L2≥0)

< δfF−1
1 (b)

x2ˆ

0

zdz =
δfx2

2

2F1 (b)
(8)
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The intuition for the bound arises from the worst-possible scenario whereby the denominators

are as small as possible, the two curves I and J are δ apart, and there also happens to be a lot

of mass between the two curves, and this mass is �integrated over� twice by de�nition of the T

mapping. Intuitively, the two images thus have to be very close together for small x2 and can only

diverge from each other monotonically as x2 increases. It is immediate that T alone may not be

a contraction map based solely on the bound in equation 8, because the equation only shows that

d (T (I; b) ,T (J ; b)) <
δfH2

2

2F1(b) , and
fx2

2

2F1(b) may not be lower than unity. However, note that T bounds

the di�erence between the images of I and J quadratically as a function of x2. Therefore, iterating

the T mapping twice (which we denote by a �2� superscript) results in a quartic bound:J;b

∣∣T 2 (I; b) (x2)− T 2 (J ; b) (x2)
∣∣ =

∣∣∣∣∣∣
x2ˆ

L2

[
F (T (I; b) , z)

F (T (I; b) , H2)
− F (T (J ; b) , z)

F (T (J ; b) , H2)

]
dz

∣∣∣∣∣∣

(I>b)
< F−1

1 (b)

∣∣∣∣∣∣∣
x2ˆ

L2

zˆ

L2

T (I;b)(y2)ˆ

T (J;b)(y2)

f (y1, y2) dy1dy2dz

∣∣∣∣∣∣∣
(f<f)&(L2≥0)&eq.8

< fF−1
1 (b)

x2ˆ

L2

zˆ

L2

δfy2
2

2F1 (b)
dy2dz =

δf
2
x4

2

4!F1 (b)

(9)

By induction, we can thus show that
∣∣∣TK (I; b) (x2)− TK (J ; b) (x2)

∣∣∣ < δ
(
fx2

2

F1(b)

)K
1

(2K)! .

Since lim
K→∞

CK

(2K)! = 0 for every positive constant C, a K exists high enough that TK is a contrac-

tion, namely K such that
(
fH2

2

F1(b)

)K
1

(2K)! < 1. One way to picture the contraction is that repeated

iteration of T brings the images of any two functions in Ψtogether like a zipper closing from left to

right along the x2axis. QED Step 1.

Step 2: First-order regularity of the candidate expected surplus function implied by

candidate isobids

The full set of candidate isobids {Ib (x2)}H1

b>L1
from Step 1 implies a unique candidate for the

expected surplus function de�ned on [L2, H2] × (L1, H1]: S (x2, w1) = Iw1
(x2) − w1. Extend

the surplus function to the entire closed support rectangle by de�ning it as a limit S (x2, L1) =
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lim
w1→L+

1

Iw1 (x2)−L1. The resulting S has the following properties stemming from the fact that S is

an integrated cumulative distribution function: S (x2, w1) ≥ 0, S is twice partially di�erentiable in

x2, S is non-decreasing in x2, 1-Lipschitz in x2, and convex in x2:

S (x2, w1) =
´ x2

L2
PrN−2 [y2 < z|y1 < Ib (y2)] dz ⇒ ∂S

∂x2
= PrN−2 [y2 < x2|y1 < Ib (y2)] ≥ 0 and

∂2S
∂x2

2
= (N − 2)PrN−3 [y2 < x2|y1 < Ib (y2)]

´ Ib(x2)

L1
f(y1,x2)dy1

F (Ib,H2) ≥ 0

where all inequalities are strict when x2 > L2. The intuition is straightforward: the expected

surplus increases in the valuation x2 because a higher valuation makes winning more likely and

also increases the actual surplus conditional on winning. Since these two at-least-linearly increas-

ing components e�ectively multiply to produce the expected surplus, the convexity results. Since

increasing x2 by a small amount can increase the expected future surplus at most by that amount

(and that only in the case when future prices are guaranteed to be below x2), the slope of S in x2

is bounded above by unity. The rest of Step 2 of the proof shows that S is well behaved not only

as a function of x2, but also as a function of w1, namely that it is �rst-order regular (see De�nition

of �rst-order regularity in the main body of the paper):

Claim 2A: ∀c < d ∈ (L1, H1) &∀x2 ∈ [L2, H2], S (x2, d)− S (x2, c) > − (d− c).

To show that S does not decrease in w1 weakly faster than unity, it is enough to show that two

candidates for equilibrium isobids cannot cross or even touch each other, that is, that I (x2, w1)

is strictly increasing in both arguments: ∀c < d ∈ (L1, H1) &∀x2 ∈ [L2, H2]: d > c ⇒ Id (x2) >

Ic (x2).

Proof: Suppose there is a pair d > c and an x2 ∈ [L2, H2] such that Id (x2) ≤ Ic (x2). Continuity

of isobids implies that the two isobids must intersect at or below x2. Let the smallest intersection

point be x∗, namely, Id (x2) > Ic (x2) for all x < x∗ and Id (x∗) = Ic (x∗). Therefore, Ic intersects

Id from below at x∗, so the slope of Ic at x∗ must be weakly higher than the slope of Id at x∗:

I
′

c (x∗) ≥ I
′

d (x∗) (10)

. The equilibrium restriction (equation is inequality based on the equilibrium relation 3) and full
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support of f rule this ordering of slopes at x∗ out. Three distinct cases exist:

Case 1 (single intersection): Id ≤ Ic on (x∗, H2] (see dotted line in Figure accompanying this

proof). From equation 3, the slope of an isobid is a probability: I
′

b (x∗) =
(
F (Ib,x∗)
F (Ib,H2)

)N−2

. Let

A = F (min (Ic, Id) , H2), A1 = F (Ic, x∗), and X = F (Id, x∗) − F (Ic, x∗) (see Figure 2 for an

illustration of these probability masses). From full support of f , X > 0. Since Id ≤ Ic on (x∗, H2],

I
′

d (x∗) =

(
A1 +X

A+X

)N−2

>

(
A1

A

)N−2

≥
(

A1

A+B + Y

)N−2

= I
′

c (x∗) (11)

, where B + Y ≥ 0 is the probability mass between the two isobids on (x∗, H2], and it is non-

negative because of full support and Id ≤ Ic on (x∗, H2]. The inequality 11 is a contradiction with

the ordering of slopes necessary for an intersection at x∗as derived in inequality 10. Intuitively, a

single intersection at x∗ forces the conditional probability of a x2 < x∗ greater for the higher and

�atter isobid, and this conditional probability happens to be the slope of the isobid at x∗.

Figure 4: Illustration of proof that isobids cannot intersect (Cases 1 and 2 of Step 2A)

Case 2 (multiple crossings): Suppose the ordering of the isobids on (x∗, H2] is ambiguous. At

least one more intersection must be at point y∗ > x∗such that Icis crossing Idfrom above and so

I
′

c (y∗) ≤ I
′

d (y∗) (12)
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. For equilibrium isobids, the order of slopes at the lowest intersection x∗shown in equation 10 and

the full support rule out this ordering of slopes at y∗. Let A2 + B1 = F (Id, y∗)− F (Id, x∗), Y =

[F (Ic, y∗)− F (Ic, x∗)]−[F (Id, y∗)− F (Id, x∗)], andQ = [F (Id, H2)− F (Id, y∗)]−[F (Ic, H2)− F (Ic, y∗)]

(see Figure). From full support of f , A2 + B1 > 0 and Y > 0, but the sign of Q is ambiguous.

Nevertheless, we can express I
′

c (x∗) ≥ I ′

d (x∗) as

I
′

c (x∗) =

(
A1

A+B + Y

)N−2

>

(
A1 +X

A+B +X +Q

)N−2

= I
′

d (x∗) (13)

To obtain the implied slopes at y∗, add A2+B1+Y to the LHS of equation 13 numerator and only

A2 + B1 to the RHS of equation 13 numerator. These additions clearly preserve the inequality in

equation 13, but they imply an ordering of slopes at y∗:

I
′

c (y∗) =

(
A1 +A2 +B1 + Y

A+B + Y

)N−2

>

(
A1 +X +A2 +B1

A+B +X +Q

)N−2

= I
′

d (y∗) (14)

, and this ordering is a contradiction with the necessary ordering of slopes for a second intersection

at y∗ in equation 12.

Case 3: The only remaining possibility is that x∗ is in fact a point of tangency, namely, I
′

c (x∗) =

I
′

d (x∗) and Id > Ic everywhere other than at x∗. Since Cases 1 and 2 rule out any intersections,

tangency at x∗ means the tangency holds for all z ∈ [c, d]: I
′

z (x∗) = λ for some constant λ. Recall

that the candidate isobids are convex in x2. Since higher z have higher intercepts and there are no

other intersections, the curvatures of all the Iz at x∗ thus must be nondecreasing in z: dI
′′
z (x∗)
dz ≥ 0.

Once again, equilibrium implies this ordering of curvatures cannot happen: for every z ∈ [c, d],

I
′

z (x∗) =
(
F (Iz,x∗)
F (Iz,H2)

)N−2

= λ, so

I
′′

z (x∗) = (N − 2)λ

´ Iz(x∗)
L1

f (x1, x∗) dx1

F (Iz, x∗)

 . (15)

Since Iz (x∗) is a constant for z ∈ [c, d] and F (Iz, x∗) strictly increases in z because of full support,

the numerator of the ratio in equation 15 is constant in z while the denominator increases, and so
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I
′′

z (x∗) strictly decreases in z, a contradiction with
dI

′′
z (x∗)
dz ≥ 0. QED Claim 2A.

Claim 2B: S is continuous in w1 on w1 ∈ [L1, H1].

We proceed in two sub-steps: �rst, we show that the candidate equilibrium surplus function

S(x2, w1) is continuous in w1 at all w1 ∈ (L1, H1]

.BydefiningIL1 (x2) as a limit, we then extend the candidate surplus function to be continuous

on the entire closed support [L2, H2]× [L1, H1].

To show that S (x2, w1) is continuous in w1 at all w1 ∈ (L1, H1]

, itisenoughtoshowthatI(x2|w) is upper semi-continuous in w1at all w1 ∈ (L1, H1]

.Theproofoflowersemi − continuityisanalogous.F ixw1 and consider any monotonically de-

creasing sequence of δn > 0 such that lim
n→∞

δn = 0. The corresponding sequence of isobids

{Iw1+δn (x2)}∞n=1 is uniformly bounded because it projects into a closed interval, and it is equicontin-

uous because all isobids are nondecreasing and have slopes less than unity (1-Lipschitz). Therefore,

the Arzela-Ascoli Theorem implies that {Iw1+δn (x2)}∞n=1 has a uniformly convergent subsequence,

and its limit is some 1-Lipschitz function I+
w1

(x2). Monotonicity of the original sequence (from

candidate isobids not intersecting, shown above in Claim 2A) implies that the subsequence also

converges uniformly to I+
w1

(x2), because when Iw1+δn (x2) is an element of the convergent subse-

quence, all I+
w1+δn+k

(x2) are between Iw1+δn (x2) and I+
w1

(x2) in the supremum metric. Monotonic-

ity further implies that for every δ, Iw1
(x2) ≤ I+

w1
(x2) < Iw1+δn (x2). For upper semi-continuity in

w1, it remains to be shown that the �rst inequality is in fact an equality: Iw1 (x2) = I+
w1

(x2) .

The uniform convergence of {Iw1+δn (x2)}∞n=1 implies that the implied sequence of distribu-

tions {Pr (x2 ≤ z | x1 < Iw1+δn (x2))}∞n=1 also approaches the implied Pr
(
x2 ≤ z | x1 < I+

w1
(x2)

)
uniformly. The uniform convergence of {Pr (x2 ≤ z | x1 < Iw1+δn (x2))}∞n=1 in turn implies that

the equilibrium relation from equation 3, which holds for every member of the sequence, is pre-

served in the limit I+
w1

(x2) = T
(
I+
w1

(x2) ;w1

)
, and so it must be true that I+

w1
(x2) = Iw1

(x2),

because each isobid is unique (Claim 1). QED Claim 2B.
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Claim 2C: lim
w1→L1+

S (x2, w1) = 0.

The equilibrium condition in equation 3 is not de�ned for the function IL1
(x2) = L1, because the

probability mass below it is zero. Recall the de�nition of a cumulative distribution function under

a continuous curve from equation ??. The equilibrium restriction can be equivalently expressed (by

di�erentiating both sides twice) as a di�erential-integral equation:

I
′′

b (x2)FN−2 (Ib, H2) = (N − 2)FN−2 (Ib, x2)

Ib(x2)ˆ

L1

f (y1, y2) dy1 (16)

with initial conditions Ib (L2) = b, I
′

b (L2) = 0. The alternative equilibrium condition 16 holds

forIL1
(x2) = L1, so it is a candidate for an equilibrium isobid.

We now show that it is a unique candidate, and that higher Ib (x2) converge to it as b ap-

proaches L1. By the same arguments used above in the proof of Claim 2B, any monotonic sequence

{IL1+δn (x2)}∞n=1 converges uniformly to some 1-Lipschitz function J (x2) such that L1 ≤ J (x2) <

IL1+δn (x2) and J (L2) = L1. It remains to be shown that J (x2) = IL1
(x2) = L1. Suppose

J (x2) > L1 for some x2 > L2, so there is a positive mass under J : F (J,H2) > 0 (from continuity

of J together with full support of f ). F (J,H2) > 0 in turn implies that the RHS equation 3 is well

de�ned, so J = T (J ;L1); that is, J is a valid isobid for the bid-level L1 (again, see proof of Claim

2B for details). The rest of this proof shows no J : [L2, H2] → [L1, L1 +H2 − L2] can exist such

that F (J,H2) > 0, and J = T (J ;L1). Suppose otherwise, letδ = d (J, L1) under the supremum

metric, and consider the following bound on how far apart L1 and T (J ;L1) can be pointwise:

|L1 − T (J ;L1) (x2)| =

∣∣∣∣∣∣
x2ˆ

L2

[
F (J, z)

F (J,H2)

]
dz

∣∣∣∣∣∣ <
∣∣∣∣∣∣
x2ˆ

L2

[´ z
L2

´ L1+δ

L1
f (y1, y2) dy1dy2

F (J,H2)

]
dz

∣∣∣∣∣∣
(f<f)&(L2≥0)

< δfF−1 (J,H2)

x2ˆ

0

zdz =
δfx2

2

2F (J,H2)
(17)

Analogously with equation 8 bounding the images of two arbitrary isobids of the same level

to be quadratically far apart, equation 17 bounds the distance between L1 and T (J ;L1) to be

quadratically far apart. We can thus use the same �trick� to bound the distance between L1 and
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T k (J ;L1) , and �nd that the distance d
(
T k (J ;L1) , L1

)
must approach zero. The only subtle

di�erence is that L1 is not a �xed point of T (·;L1) because T (L1;L1) is not de�ned: T (·;L1) is

not a continuous function on the space of 1-Lipschitz functions J : [L2, H2] → [L1, L1 +H2 − L2].

QED Claim 2C.

Step 3: Claims 1 and 2 show that there is a unique �rst-order regular S (x2, w1) on [L2, H2]×

[L1, H1] , so equation 2 characterizes the best response to S that satis�es β1 (x1, x2) = x1 −

S (x2, β1 (x1, x2)).

We now describe the properties of β1: First, β1 (L1, x2) = L1 because S (x2, L1) = L1. Second,

the fact that S (x2, w1) is an integrated cdf implies β1 (x1, L2) = x1 and x1 > β1 (x1, x2) > L1 away

from (L1, L2). Third, suppose for simplicity that S is partially di�erentiable in w1, and implicitly

di�erentiate of the �rst-order condition in equation 2: ∂β1

∂x2
= − ∂S

∂x2
�
(

1 + ∂S
∂w1
|w1=β1

)
< 0 away

from (L1, L2) because the numerator is negative by convexity of S in x2 (and the denominator is

positive by �rst-order regularity of S). Similarly, ∂β1

∂x1
=
(

1 + ∂S
∂w1
|w1=β1

)−1

> 0, so β1 (x1, x2)

is increasing in x1. This con�rms that the equilibrium is strictly monotone. The curvature of

β1 (x1, x2) is ambiguous. QED Step 3. QED Theorem 1
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