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Abstract Multivariate economic and business data frequently suffer from a missing
data phenomenon that has not been sufficiently explored in the literature: both the
independent and dependent variables for one or more dimensions are absent for some
of the observational units. For example, in choice based conjoint studies, not all
brands are available for consideration on every choice task. In this case, the analyst
lacks information on both the response and predictor variables because the underlying
stimuli, the excluded brands, are absent. This situation differs from the usual missing
data problem where some of the independent variables or dependent variables are
missing at random or by a known mechanism, and the “holes” in the data-set can
be imputed from the joint distribution of the data. When dimensions are absent, data
imputation may not be a well-poised question, especially in designed experiments. One
consequence of absent dimensions is that the standard Bayesian analysis of the multi-
dimensional covariances structure becomes difficult because of the absent dimensions.
This paper proposes a simple error augmentation scheme that simplifies the analysis
and facilitates the estimation of the full covariance structure. An application to a
choice-based conjoint experiment illustrates the methodology and demonstrates that
naive approaches to circumvent absent dimensions lead to substantially distorted and
misleading inferences.
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1. Introduction

A Bayesian analyst faces a practical difficulty with multivariate economic and busi-
ness data when both the independent and the dependent variables for some measured
dimensions are absent from some observations. The motivating example of this sit-
uation occurs in choice-based conjoint (CBC) experiments, where subjects evaluate
multiple choice-sets consisting of product alternatives represented by profiles (see
Haaijer and Wedel (2002) for a review of the CBC literature). Frequently, the choice-
sets comprise subsets from a list of brands under study, and not all brands are included
in every choice-set. The usual goal of the experiment is to learn about the inter-related
structure of demand for all the brands, so demand for each brand is one dimension
of a multivariate dataset, and the brands excluded from a particular choice-task are
“absent dimensions” of that choice-task. Absent dimensions also occur in several
other marketing contexts: In supermarket scanner-panel data, a category can consist
of hundreds of SKUs, but not all are available to consumers in all stores during
all weeks. In internet shopbot data, not all major retailers offer every book (Smith
and Brynjolfsson, 2001). At the aggregate level, retail sales are usually reported at the
product level, and different stores in a given market typically sell different assortments
of products (Chintagunta, 2002). Finally, in fractional-factorial surveys, data usually
contains individual responses to several related questions, and different versions of
the survey may ask different subsets of the questions (Labaw, 1980).

To model the above situations, the multivariate normal distribution is widely used—
if not for the observed responses, then for latent constructs—to allow for correlations
among the dimensions. The varying absent dimensions of the observations make
Bayesian inference about the parameters of the distribution difficult because the
Inverted-Wishart prior for the covariance matrix is no longer conveniently conjugate
to the likelihood of the data. Conjugacy breaks down because each observation in
the data generically consists of a different subvector of the dimensions, and thus
only involves a submatrix of the full covariance matrix, whereas the Inverse-Wishart
distribution has a density involving the full covariance matrix. This paper proposes a
simple data-augmentation method (Tanner and Wong, 1987) that facilitates Bayesian
inference about the full covariance matrix under the condition of varying absent
dimensions. By augmenting the absent residuals of the multivariate normal model,
the procedure restores the conjugacy of the Inverted-Wishart prior and simplifies
Bayesian inference. The residual augmentation avoids numerically costly Metropolis
steps in Markov chain Monte Carlo (MCMC) and can easily be added to standard
procedures.

We develop the residual augmentation procedure in the simplest situation of a
multivariate regression model, which illustrates the essential features of the problem.
After establishing the feasibility of the approach in that simple case, we extend it to
hierarchical Bayes (HB) multivariate regression, which is the basis of our focal model,
the HB multinomial-probit (HB-MNP) model (Albert and Chib, 1992; McCulloch and
Rossi, 1994), commonly used for marketing choice-data. We then apply the HB-MNP
model to a choice-based conjoint dataset where the choice tasks consist of varying
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subsets of brands. Not only do we illustrate that the procedure is effective but also
show that several marketing conclusions are substantially impacted by allowing for
error correlations.

Absent dimensions are qualitatively different from well-known missing data models
where the process that generates the missing data is ignorable or can be modelled (see
Little and Rubin, 2002). Common examples of missing data are nonresponse to items
on a survey, or data-collection and processing errors. In missing data models, one
assumes that the stimuli are present but the subjects’ responses are missing, so the
Bayesian procedure is to impute the missing observations from the joint distribution
given the observed data. When not just the data but also the stimuli are absent, then
imputing the entire dimension for the missing stimuli is not a well-poised problem.
For example, in a CBC experiment, it is not meaningful to ask: “Would subject i have
selected brand b if brand b was, in fact, part of the choice task?” We show that imputing
only the absent residuals is sufficient for a Bayesian analysis of a multivariate-Normal
model to proceed. The absent-dimensions situation is also different from Bradlow
et al., (2004) who impute subjects’ perceptions about absent attribute levels in partial-
profile studies. In their model, all brands are included in each choice task, but some
of the product-attributes are missing.

The paper is organized as follows: The following Section 2 reviews the existing
approaches to Bayesian analysis of marketing data with missing dimensions, and
highlights our contribution to the literature. Section 3 then develops the proposed
residual augmentation procedure for a multivariate regression model, and extends
it to estimate the multinomial probit model. Section 4 then applies the method to
choice-based-conjoint data, and Section 5 concludes.

2. Review of the marketing applications of the multinomial probit model

Existing Bayesian MNP-estimation methods circumvent the difficulty posed by ab-
sent dimensions, either by throwing away data or by assuming independence across
dimensions. The simplest and most widely used approach is to delete the observations
with absent dimensions, with a resultant loss of information. This fix is not viable if
most or all of the observations have missing dimensions, as in some CBC studies.
A second approach is to restrict the analysis to a common subset of dimensions that
are present for all observations. For example, in scanner-panel studies Allenby and
Lenk (1994, 1995) and McCulloch and Rossi (1994) considered a few major brands
of ketchup, detergents, and margarine that were available in all locations throughout
the observational period, and eliminated brands with episodic presence. Because the
focus of these papers was to develop hierarchical Bayes models and methods, and
not to analyze completely the markets concerned, this restriction was not fatal to the
papers’ theses. However, focusing on a common core of brands negates the purpose of
niche marketing and biases the choice structure in favor of brands with large market
share. For example, the cross-price elasticities in MNP depend on all brands included
in the model (Rossi et al., 1996), so restricting the study to large share brands can lead
to biased inference about competition.

Another popular way to circumvent the absent-dimensions problem is to assume
that the dimension-specific scalar errors are uncorrelated, and hence avoid the difficult
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estimation of covariances in the first place. This assumption distorts the resulting
inference to a greater or lesser degree that depends on the model and degree of actual
correlation. In the multivariate regression, the MLE point-estimate of the parameters is
unaffected, but the error correlation manifests itself in probability statements, such as
hypothesis testing and prediction. In the multinomial probit model, Hausman and Wise
(1978) and Chintagunta (1992) demonstrate that incorrectly assuming independent
errors results in inconsistent estimates.

Besides distorting inference, assuming away correlations of dimensions in the
MNP eliminates its main advantage over the simpler multinomial logit model (MNL)
as a model of utility-maximizing choice: By allowing the random-utilities of choice-
alternatives to be mutually correlated, the MNP model allows more realistic substi-
tution patterns than the MNL, which has the restrictive independence-of-irrelevant-
alternatives (IIA) property.1 Nevertheless, many marketing applications of the MNP
constrain the random-utility correlations to zero (Haaijer et al., 1998, 2000; Rossi
et al., 1996 and several others). All of these papers assume population heterogeneity
in response-parameters, thereby escaping the IIA property at least somewhat in the
aggregate behavior of the population shares. However, as Chintagunta (1992) points
out, the IIA still holds within an individual respondent.

Interestingly, most applications of the MNP to conjoint analysis use the zero-
correlation restriction (Haaijer et al., 1998, 2000). One reason for this may be the fact
that the existing Bayesian-estimation methods allow only one particular correlation
structure which is not theoretically compelling in the CBC setting, namely to associate
random utility-shocks with the order of stimuli in the choice-task. This specification
of the correlation structure is not compelling because, for example, it is not clear why
someone who is more likely to choose the second profile on the list for an unobserved
reason should also be systematically more or less likely to choose the fourth profile
for an unobserved reason, with the actual attributes of the second and fourth profiles
completely changing from task to task.

Compare the conjoint situation with the existing applications of the MNP to scanner
data, where alternatives, and hence the random components of utility, are usually
associated with brands (McCulloch and Rossi, 1994; Elrod and Keane, 1995) or
brand-attribute combinations (Chintagunta (1992) considers brand-size combinations
of ketchup, and Rossi et al. (1996), consider brand-liquid combinations of canned
tuna). These correlations have the natural and compelling interpretation of unobserved
pairwise similarities between products (SKUs) at the brand or brand-attribute level.
These papers report significant non-zero correlations, so it seems that restricting the
correlations is not only theoretically but also empirically problematic. Moreover,
McCulloch and Rossi (1994) and Allenby and Rossi (1999) find positive correlations
even in the presence of population heterogeneity in response-parameters, so merely
allowing for population heterogeneity is not enough to capture real-world substitution
patterns.

1 The IIA property occurs when the preference comparison of two alternatives does not depend on the other
alternatives that are available. One implication of IIA is that the introduction of a new alternative reduces the
choice probabilities of existing alternatives on a proportional basis, which is particularly unrealistic when
subsets of alternatives are close substitutes. Taken to its natural conclusion if IIA were true, a company
could drive competitors out of business merely by offering superficial variations of its products.

Springer



Bayesian estimation of multivariate-normal models when dimensions are absent

In the standard Bayesian estimation methodology (McCulloch and Rossi, 1994),
the utility-shocks must be associated with choice-alternatives in a one-to-one
mapping. The aforementioned interpretability of these shocks in existing scanner-
data analyses thus follows from the fortunate fact that the choice-alternatives modeled
happen to be brands or brand-attribute combinations. The main contribution of this
paper is to allow Bayesian analysts of the MNP to decouple the specification of
random utility-shocks from the specification of choice-alternatives. In particular, the
proposed method can be used to associate random shocks with any discrete variable
that takes on mutually exclusive values in each choice-task. To keep the estimated
covariance matrix small, such a variable should not take on too many values across
all observations. For example, when each brand appears only once in each choice-set
and there is only a small total number of brands, the random utility-components can
be associated with brands even though the choice-alternatives are conjoint profiles.
Therefore, a Bayesian CBC-analyst can associate random utility-components with
brands as is standard in the scanner literature. Alternatively, the position of prod-
ucts on the shelf/webpage may be changing from one choice-occasion to another,
with not all positions necessarily occupied at all times. Then, it is also possible to
associate the utility-shocks with the position. We explore both possibilities in our con-
joint empirical application and conclude in favor of associating utility-shocks with
brands on the basis of superior holdout performance. The general empirical goal of
characterizing the ideal specification of utility-shocks, both in the conjoint and in
the scanner-data domains, should be a fascinating avenue for future research. For
example, the scanner-data situation offers a whole range of possibilities: in the limit,
random utility-shocks can always be associated with SKUs, but the resulting covari-
ance matrices may be too large, warranting aggregation to, for example, brand-size
level.

3. Residual augmentation for absent dimensions

Residual augmentation of absent dimensions is most easily seen in a multivariate
regression model. After detailing the results for multivariate regression, we adapt the
model to hierarchical Bayes (HB) multivariate regression, which is then used as the
basis of the procedure for HB multinomial-probit models.

3.1. Multivariate regression

Consider the multivariate regression model:

Yi = Xiβ + εi for i = 1, . . . , n

where Yi is a m-vector of dependent variables for unit i ; Xi is a m × p matrix of
independent variables for unit i , β is a p-vector of regression coefficients; and εi is
the error term. The error terms are mutually independent random variables from a
multivariate normal distributionwith mean zero and covariance matrix �:

[εi ] = Nm(0, �).
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We will use the bracket notation to signify the distribution of the argument. The prior
distributions are:

[β] = Np(b0, V0) and [�] = I Wm( f0, S0)

where I Wm( f0, S0) is the m-dimensional, inverted Wishart distribution with f0 prior
degrees of freedom and scale parameters S0. Under our specification of the Inverse
Wishart distribution, the prior mean of � is S0/( f0 − m − 1). By correctly defining
the design matrices Xi , this model includes the standard multivariate regression model
that has different regression coefficients for each component of Yi and the seemingly
unrelated regression models of Zellner (1971).

The case that we will study is when the same dimensions of Yi and Xi are ab-
sent. Define P(i) to be the vector of indices corresponding to the present or absent
dimensions for unit i , and A(i) to be a vector of indices corresponding to the absent
dimensions for unit i . A(i) is the null vector if all of the dimensions are present.
Define mi to be the number of present dimensions for unit i . YP(i) and XP(i) are the
observations for unit i . The error covariance matrix is partitioned according to P(i)
and A(i): �P(i),P(i) is the P(i) rows and columns of � corresponding to the present
dimensions; �A(i),A(i) is the A(i) rows and columns of � corresponding to the absent
dimensions, and �A(i),P(i) is the A(i) rows and P(i) columns of �.

The likelihood function of the data with absent dimensions is:

L(β,�) =
n∏

i=1

|�P(i),P(i)|− 1
2 exp

[
−1

2

(
YP(i) − XP(i)β

)′
�−1

P(i),P(i)

(
YP(i) − XP(i)β

)]
.

For the error covariances to be identified, every pair of dimensions must appear
together at least once.

While a frequentist can simply maximize the above likelihood function over the pa-
rameter space, the absent dimensions create technical problems for Bayesian MCMC
procedures. The full conditional distribution for β is a multivariate normal andnot
difficult to generate:

[β|Data, �] = Np(bn, Vn)

Vn =
(

V −1
0 +

n∑

i=1

X ′
P(i)�

−1
P(i),P(i) XP(i)

)−1

bn = Vn

(
V −1

0 b0 +
n∑

i=1

X ′
P(i)�

−1
P(i),P(i)YP(i)

)

However, the full conditional distribution for � is no longer an inverted Wishart
distribution due to the varying dimensions of YP(i) and XP(i): If all dimensions are
present, then the full conditional distribution for � given β depends on the residuals:

Ri = Yi − Xiβ, for i = 1, . . . , n.
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Given full-dimensional residuals Ri , the aforementioned conjugacy of the inverted-
Wishard to the likelihood in the full-conditional distribution follows because the den-
sity function of the inverted-Wishart has the same functional form, up to normalizing
constant, as the likelihood for � given β:

[�] ∝ |�|−( f0+m+1)/2 exp

[
−1

2
tr(�−1S0)

]

L(�|β) ∝ |�|−n/2 exp

[
−1

2
tr(�−1SSE)

]

SSE =
n∑

i=1

(Yi − Xiβ)(Yi − Xiβ)′

so the full conditional of � given β and the data is:

[�|β, Y ] ∝ |�|−( fn+m+1)/2 exp

[
−1

2
tr(�−1Sn)

]

fn = f0 + n and Sn = S0 + SSE .

This conditional conjugacy breaks down when only sub-vectors of the residuals
are available:

RP(i) = YP(i) − XP(i)β, for i = 1, . . . , n.

The conditional likelihood of � given β becomes:

L(�|β) ∝
n∏

i=1

|�P(i),P(i)|− 1
2 exp

[
−1

2
tr
(
�−1

P(i),P(i)SSEi
)]

SSEi = (YP(i) − XP(i)β)(YP(i) − XP(i)β)′

where the outer products of the residuals SSEi have different dimensions. The full
conditional of � is a proper distribution, but not in the inverted-Wishart family.

A simple way to work around the difficulty, while preserving the usefulness of the
Inverted Wishart prior, is to augment (Tanner and Wong, 1987) the residuals for the
absent dimensions. Since a subset of multivariate Normal variables is multivariate
Normal, residual augmentation is theoretically straightforward, and it is achieved by
drawing the absent residuals RA(i) for every observation i :

[
RA(i)|RP(i), �, β

] = Nm−mi

(
µA(i)|P(i), �A(i)|P(i)

)

µA(i)|P(i) = �A(i),P(i)�
−1
P(i),P(i) RP(i)

�A(i)|P(i) = �A(i),A(i) − �A(i),P(i)�
−1
P(i),P(i)�P(i),A(i).
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Together with the present residuals RP(i), the augmentation produces full-dimensional
residual vectors that can be used as pseudo-observations in the conditional posterior
draw of � as if there were no absent dimensions:

[�|Rest] = I Wm( fn, Sn)

fn = f0 + n

Sn = S0 +
n∑

i=1

Ri R′
i

where Ri is a concatenation of RP(i) and RA(i).
The conditional posterior draw of β must now account for the augmented resid-

uals RA(i) because RP(i) and RA(i) are correlated. RP(i) given RA(i), the error of
observation i , follows a Normal distribution because the distribution of a subset of
multivariate Normal variables conditional on it complement is again Normal. The
conditional distribution is thus still Normal as in the standard “full-dimensional”
case, but the computation of the conditional mean and variance of β may at first
seem cumbersome because each observation involves errors with generically differ-
ent means and variances depending on the pattern of absence in that observation. We
utilize a convenient implementation of the conditional posterior draw of β that uses
existing “full-dimensional” code, and does not require the computation of conditional
distributions of RP(i) given RA(i) observation by observation. In the standard code
for the “full-dimensional” draw, set XA(i) ← 0, and YA(i) ← RA(i). The left arrow
is used to indicate an assignment of a value to a variable to distinguish it from a
mathematical identity. Then, the mean and variance of the conditional distribution of
can be computed exactly as if there were no absent dimensions, i.e. using existing
“full-dimensional” code:

[β|Rest] = Np(bn, Vn)

Vn =
(

V −1
0 +

n∑

i=1

X ′
i�

−1 Xi

)−1

bn = Vn

(
V −1

0 b0 +
n∑

i=1

Xi�
−1Yi

)

The implementation works because of the properties of inverses of partitioned matri-
ces. This concludes the description of the modified Gibbs sampler.

We demonstrate this procedure with four simulations. The design of the first simu-
lation is not very challenging to the algorithm: there are three dimensions and pairs of
dimensions are randomly present. This simulation confirms that the algorithm works
as the above computations indicate. The second and third simulations are designed to
stress the algorithm. In the second simulation, one of the covariances is not identified
because the two dimensions for that covariance are never jointly present: we will
term this as “data nonidentification” because the nonidentification is due to the data
structure. This simulation indicates that the lack of identification for one covariance
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Table 1 Posterior parameters for multivariate regression simulation one and two

Simulation one all pairs present Simulation two pairs {1, 2} &
{2, 3} present

Regression Posterior Posterior
coefficient True Mean STD Mean STD

β1 1.0 1.057 0.036 1.062 0.042
β2 −1.0 −0.958 0.033 − 0.953 0.040

Error Posterior Posterior
Covariance True Mean STD Mean STD

σ 1,1 1.0 0.990 0.074 0.900 0.082
σ 1,2 0.6 0.622 0.078 0.586 0.076
σ 1,3 −0.5 −0.445 0.059 0.072 0.451
σ 2,2 1.4 1.358 0.105 1.517 0.096
σ 2,3 0.0 0.132 0.080 0.100 0.064
σ 3,3 0.8 0.809 0.062 0.724 0.065

Error Posterior Posterior
Correlation True Mean STD Mean STD

ρ1,2 0.507 0.536 0.050 0.501 0.047
ρ1,3 −0.559 −0.497 0.052 0.088 0.554
ρ2,3 0.000 0.125 0.075 0.094 0.059

does not adversely affect estimation of the rest of the model parameters. The third
simulation shows that the algorithm performs well even with a high degree of absent
dimensions, and the fourth simulation illustrates the mixing of the chain.

In the first and second simulation there are m = 3 dimensions and n = 500
observations. There are two independent variables: X1 was randomly sampled from a
uniform distribution between plus and minus one, and X2 was a dummy variable for
the first dimension. That is, the intercepts for dimensions two and three were zero.
Simulated data were generated from the model:

Yi,1 = Xi,1β1 + β2 + εi,1, Yi,2 = Xi,1β1 + εi,2, and Yi,3 = Xi,1β1 + εi,3.

The true parameters were β1 = 1 and β2 = −1, and the covariance of {εi } was:

cov(εi ) =
⎡

⎣
1.0 0.6 −0.5
0.6 1.4 0.0

−0.5 0.0 0.8

⎤

⎦ .

We purposely used a simple regression equation to focus attention on estimating the
error covariance matrix. The priors were [β] = N2(0, 100I ) and [�] = I W2(5, S0)
with S0 set to center the prior on the identity matrix.

In the first simulation, all pairs of dimensions {1, 2}, {1, 3}, and {2, 3} were present
with equal probabilities. In the second simulation, half of the dimensions were {1, 2}
and half were {2, 3}, so that σ1,3 is not identified with this data. The MCMC used
a total of 100,000 iterations, discarding the first 50,000. Table 1 presents the pos-
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Fig. 1 Posterior distributions for the covariance and correlation for the first simulation of the multivariate
regression model. Correlations are below the diagonal. Vertical solid lines are the true parameter values;
the solid curves are prior densities, and histograms are posterior distributions

terior parameters for both cases. In simulation one, the residual imputation for the
absent dimension results in accurate estimates for all of the parameters. The same is
true for simulation two with the exception of the data unidentified covariance σ1,3.
Because the {1, 3} pair was never present, the posterior mean is inaccurate and the
posterior standard deviation is large. This result is not surprising. A more interesting
result is that the other parameters are accurately estimated so that the data uniden-
tifiability for σ1,3 does not adversely effect the other estimators. Figures 1 and 2
display the prior and posterior distribution for the error covariances and correlations
for the two simulations. These figures confirm the results from Table 1. The “U”
shape for the posterior distribution of σ1,3 in Fig. 2 was unexpected and remains
unexplained.

The third simulation illustrates a high degree of absence. The number of dimensions
is m = 8, and n = 2000 random pairs were generated using the same mean structure
as in simulations one and two. The error variances were set as σk,k = k, and the error
correlations were randomly drawn from a uniform distribution on [−0.5, 0.5]. The
resulting covariance matrix was not well conditioned with the smallest eigenvalue of
0.0122. The sample used the same number of iterations as the first two simulations.
The β parameters were estimated quite well at 1.022 (STD 0.030) and −0.972 (STD
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Fig. 2 Posterior distributions for the covariance and correlation for the second simulation of the multi-
variate regression model. Correlations are below the diagonal. Vertical solid lines are the true parameter
values; the solid curves are prior densities, and histograms are posterior distributions

0.024). The error variances were also well recovered, which was expected given the
large sample size. Figure 3 presents the posterior means and ± 2 posterior standard
deviation error bars for the 28 covariances and correlations plotted against their true
values. The 450 line provides a reference for the true parameters and their posterior
means.

These simulations illustrate that the imputation of the absent dimensions facil-
itates the estimation of the covariance matrix. However, there is a small price to
pay in terms of the mixing of the MCMC algorithm, which is demonstrated with
the following simulation. Once again, n = 500 observations were generated from a
multivariate regression model with m = 3 dependent measures and one independent
variable. The independent variable was generated from a standard normal distribution
with different values for each dependent measures. Table 2 displays the true param-
eters and their Bayes estimators for a full dataset and one with absent dimensions.
One third of the dimensions were randomly deleted in the incomplete dataset. Once
again, the posterior means for the full and incomplete data are close to their true
values. The posterior standard deviations tend to be smaller for the full dataset, which
has a total of 1500 dependent observations, than the incomplete dataset, which only
has 1000 observations. Figure 4 graphs the autocorrelation function for the MCMC
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Fig. 3 Posterior distributions of the off-diagonal covariances and correlations in simulation three of the
multivariate regression model

iterations. In each panel, the maximum, minimum, and median autocorrelation of
six parameters (six regression coefficients and six covariances) are plotted against
their lags. For the absent dimensions, the first few autocorrelations, especially for
the covariance matrix, are substantial, especially compared to the full dataset. How-
ever, the comparison is not “fair” in that the analyst may not have the luxury of
full-dimensional data, as pointed out in the Introduction. In any case, all autocorre-
lations rapidly decline with lag number, making inference feasible even with absent
dimensions.

3.2. HB multivariate regression

The extension of the data augmentation method to hierarchical Bayes, multivariate
regression is straight forward. There are repeated observations on each subject or
sampling unit. The “within” units model is:

Yi, j = Xi, jβi + εi, j for i = 1, . . . N ; and j = 1, . . . , ni

where Yi, j is a m-vector of dependent variables for observation j of unit i . The error
terms {εi, j } are mutually independent from Nm(0, �). Conceptually, the heterogeneity
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Table 2 Multivariate regression: Parameter estimates for simulation 4

Posterior mean Posterior STD DEV
True Full Absent Full Absent

Constant 1 2.0 1.951 1.988 0.062 0.079
Constant 2 −1.0 −1.169 −1.300 0.092 0.112
Constant 3 3.0 2.867 2.863 0.122 0.144
X1 1.0 0.952 0.971 0.059 0.073
X2 0.0 −0.167 −0.202 0.095 0.118
X3 −2.0 −2.026 −1.888 0.119 0.144
σ 1,1 2.0 1.948 2.059 0.122 0.159
σ 2,1 0.5 0.509 0.396 0.131 0.238
σ 2,2 4.0 4.339 4.186 0.275 0.331
σ 3,1 −1.0 −1.175 −1.325 0.178 0.276
σ 3,2 0.0 −0.426 −0.760 0.259 0.436
σ 3,3 7.0 7.494 7.334 0.480 0.560

Simulation generated 500 observations for the full dataset. One third of the dimensions were ran-
domly deleted. The full and incomplete datasets have a total of 1500 and 1000 dependent observations,
respectively.

Fig. 4 Autocorrelation function from multivariate regression simulation 4. Minimum, median, and maxi-
mum ACF at each lag for the regression coefficients and covariances with full and absent dimensions

for the βi can be any model; the exact form is not pertinent for our arguments. Once
the present dimensions are augmented with residuals for the absent dimensions as in
the pervious sub-section, the generation of � and βi proceeds as standardly performed
with complete data.
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Define A(i, j) to be the absent dimensions of Yi, j and Xi, j , and P(i, j) to be the
present dimensions. Let mi, j be the number of present dimensions and m − mi, j be the
number of absent dimensions. Once again, the MCMC augments the present data with
residuals from the absent dimensions. As before, assign zeros to absent independent
variables XA(i, j), and the augmented residuals to the absent dimensions of Yi, j . Given
βi and �, generate the residuals for the absent dimensions:

[
RA(i, j)|�,βi

] = Nm−mi, j

(
µA(i, j)|P(i, j), �A(i, j)|P(i, j)

)
(1)

µA(i, j)|P(i, j) = �A(i, j),P(i, j)�
−1
P(i, j),P(i, j) RP(i, j) (2)

RP(i, j) = YP(i, j) − XP(i, j)βi (3)

�A(i, j)|P(i, j) = �A(i, j),A(i, j) − �A(i, j),P(i, j)�
−1
P(i, j),P(i, j)�P(i, j),A(i, j). (4)

Augment the present dimensions YP(i, j) with RA(i, j) to obtain a complete-m vector
Yi,j.

After imputing the absent residuals, the rest of the MCMC follows from standard
arguments, regardless of the rest of the model specification. In the empirical example,
we will use a multivariate regression model (Lenk et al., 1996) for the “between” units
model of heterogeneity of {βi }:

βi = �′zi + δi for i = 1, . . . , n (5)

where � is a q × p matrix of regression coefficients; zi is a q-vector of covariates for
unit i , and δi are mutually independent error terms from Np(0,�). Suppose, moreover,
that the prior distributions are:

[�] = I Wm
(

f0,�, S0,�

)
; [�] = I Wp

(
f0,�, S0,�

)
;

and [vec(�′)] = Npq (u0, V0) (6)

where vec(�′) stacks the rows of �. Appendix A details the full conditional distri-
butions for the MCMC algorithm. One could just as easily use different forms of
heterogeneity, such as mixture models (Lenk and DeSarbo, 2000). The main point is
the residual augmentation is conditionally independent of the heterogeneity specifi-
cations. We highlight the multivariate regression specification because we will use it
in the application.

We illustrate the algorithm with a simulated data set where the between-units
model is in Eq. (5). In the simulation, the number of dimensions is m = 4; N =
500; and ni varied from 11 to 20 with an average of 15.6 and standard deviation of
2.9. Each Yi, j and Xi, j had one or two absent dimensions. In addition to the four
intercepts, there were two additional predictor variables. The covariate zi consisted
of an intercept and two other variables. Table 3 reports fit statistics between the true
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Table 3 HB multivariate
regression: Fit statistic for
individual-level coefficients

Correlation RMSE

Intercept 1 0.972 1.824
Intercept 2 0.732 1.970
Intercept 3 0.692 2.140
Intercept 4 0.864 2.319
X1 0.998 0.364
X2 0.969 0.662

Correlation and RMSE are the
correlation and root mean
squared error between the true
regression coefficient and the
posterior mean.

βi from the simulation and its posterior mean, and Table 4 displays the true model
parameters and their posterior means and standard deviations. Both tables indicates
that the procedure does recover the model structure even when nearly half of the
dimensions where absent.

3.3. HB multinomial-probit

The data imputation method for the multivariate models in Sections 3.1 and 3.2 ex-
tends to multinomial-probit (MNP) models, which assume that the observed, nominal
responses arise form latent or unobserved, multivariate normal random variables. Be-
cause our application uses consumer choice data from a choice-based conjoint analysis
(CBC), we will develop the MNP with that application in mind. In choice experiments
like CBC, subjects are presented with sets of alternatives also called “profiles,” each
profile describing a product or service using brands and other attributes. From each
set of profiles, a subject is asked to pick the one he or she most prefers.

The multinomial probit model captures the choice-behavior by assuming the each
subject maximizes latent utility over the set of profiles. The latent utility of each profile
is given by a linear combination of the attributes Xβ plus a “random component” term ε

that captures an idiosyncratic unobserved random shock. Suppose that the experiment
design involves m brands, and each brand appears at most once in each choice-set of
profiles. A theoretically meaningful way to specify the covariance between any pair
of ε is to treat brands as dimensions of the underlying multivariate regression of latent
utilities on attributes. Since not all brands are present in all choice-tasks,the underlying
regression has absent dimensions, and the augmentation methodology discussed in
Section 3.1 can be used in the MNP context almost immediately.

In choice task j , subject i evaluates the brands given by P(i, j), which is a subset
of the m brands. The absent brands are indexed by A(i, j), which is the complement
of P(i, j). YP(i, j) a mi, j -vector of unobserved random utilities for the brands in the
choice set P(i, j). Subject i selects that brand that maximizes his or her utility for the
brands. If the subject picks brand ci, j :

Yi, j,ci, j = max
u∈P(i, j)

Yi, j,u for i = 1, . . . N , j = 1, . . . , ni , and ci, j ∈ P(i, j). (7)

The observed data are the indices of the preferred alternatives {ci, j } given the choice
sets {P(i, j)}. The analysis of the HB-MNP model follows that of the HB multivariate
regression model, with the additional generation of the utilities for the brands in the
choice task. As in HB multivariate regression, we will assume that the utility of the
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Table 4 HB multivariate regression: Parameter estimates

Y1 Y2 Y3 Y4

True �

Y1 1.0 0.1 0.0 1.0
Y2 0.1 4.0 0.0 4.1
Y3 0.0 0.0 9.0 0.0
Y4 1.0 4.1 0.0 21.0

Posterior mean �

Y1 1.004 0.068 0.154 0.935
Y2 0.068 4.052 0.180 4.111
Y3 0.154 0.180 9.131 0.166
Y4 0.935 4.111 0.166 21.529

Posterior STD �

Y1 0.022 0.048 0.070 0.115
Y2 0.048 0.092 0.153 0.198
Y3 0.070 0.153 0.203 0.335
Y4 0.115 0.198 0.335 0.469

Intercept 1 Intercept 2 Intercept 3 Intercept 4 X1 X2

True �

Constant −15.0 −5.0 5.0 20.0 −5.0 3.0
Z1 2.0 1.0 0.0 −2.0 1.0 −0.2
Z2 −1.0 −0.5 0.0 1.0 −0.2 0.5

Posterior mean �

Constant −14.778 −6.497 5.521 18.754 −4.168 −2.199
Z1 1.745 0.920 −0.203 −2.148 0.951 0.282
Z2 −0.798 −0.295 0.070 1.333 −0.186 0.530

Posterior STD �

Constant 1.650 1.750 1.838 1.920 1.545 1.625
Z1 0.498 0.529 0.557 0.578 0.472 0.498
Z2 0.267 0.277 0.295 0.294 0.243 0.256

True �

Intercept 1 0.250 −0.500 0.750 0.000 0.125 −0.150
Intercept 2 −0.500 2.000 −1.000 0.000 −0.750 −0.700
Intercept 3 0.750 −1.000 4.750 0.000 1.625 −0.875
Intercept 4 0.000 0.000 0.000 4.000 0.000 0.000
X1 0.125 −0.750 1.625 0.000 7.563 2.975
X2 −0.150 −0.700 −0.875 0.000 2.975 11.093

Posterior mean �

Intercept 1 0.277 −0.002 −0.107 0.251 0.432 0.586
Intercept 2 −0.002 2.160 −1.571 −0.421 0.034 0.252
Intercept 3 −0.107 −1.571 3.363 −1.207 2.255 −0.377
Intercept 4 0.251 −0.421 −1.207 3.951 0.726 0.678
X1 0.432 0.034 2.255 0.726 8.586 3.281
X2 0.586 0.252 −0.377 0.678 3.281 10.414

Posterior STD �

Intercept 1 0.136 0.189 0.161 0.208 0.275 0.490
Intercept 2 0.189 0.376 0.284 0.347 0.395 0.570
Intercept 3 0.161 0.284 0.477 0.484 0.455 0.549
Intercept 4 0.208 0.347 0.484 0.642 0.542 0.695
X1 0.275 0.395 0.455 0.542 0.562 0.478
X2 0.490 0.570 0.549 0.695 0.478 0.721
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product description or profile is linear in the attributes:

YP(i, j) = XP(i, j)βi + εi, j . (8)

Nonlinear specifications are possible with the addition of Metropolis steps. We identify
the model by setting Yi, j,m to zero, and the first scalar variance to one. We use
McCulloch and Rossi’s, (1994) method of postprocessing the draws to enforce the
restriction that one error variance is one.

The Gibbs sampler for MNP differs from the multivariate regression model in
that the latent utilities YP(i, j) of the present dimensions are also augmented. The
conditional draws of RA(i, j), β, and � remain exactly as in Section 3.1. In particular,
existing code can again be used to draw β using the implementation trick of setting
(XA(i, j) ← 0, YA(i, j) ← RA(i, j).) The new draw of YP(i, j) follows the same“Gibbs-
through” procedure as in McCulloch and Rossi (1994), but the conditional mean and
variance need to be adjusted for the augmented absent residuals RA(i, j) observation
by observation:

[
YP(i, j)|Rest

] ∝ Nmi

(
µP(i, j)|A(i, j), �P(i, j)|A(i, j)

)
χ

(
Yi, j,ci, j = max

u∈P(i, j)
Yi, j,u

)

µP(i, j)|A(i, j) = XP(i, j)βi + �P(i, j),A(i, j)�
−1
A(i, j),A(i, j) RA(i, j)

�P(i, j)|A(i, j) = �P(i, j),P(i, j) − �P(i, j),A(i, j)�
−1
A(i, j),A(i, j)�A(i, j),P(i, j)

χ (A) = indicator function for the set A.

A hierarchical specification can be implemented as in the case of the multivariate
regression. For example, if part-worth heterogeneity is described by Eq. (5) and if the
prior distributions are specified by Eq. (6), then the updating follows that of Section
3.2.

McCulloch et al. (2000) and Imai and van Dyk (2005) provide alternative models
and algorithms for handling the error variance constraints in MNP models. As is
well known (Imai and van Dyk, 2005; McCulloch et al., 2000), the ACFs in the
full-dimensional probit samplers are much greater than in the linear regression, often
dissipating only after 100 lags or so. We do not find a significant detrimental effect of
absent dimensions beyond this. Our algorithm for absent dimensions does not depend
on the method of enforcing the variance constraints, and it can be used with any of
these alternatives.

4. Stated preference experiment

We illustrate the absent dimension problem with a choice-based conjoint (CBC)
dataset provided by Bryan Orme of Sawtooth Software. We will use the HB-MNP
model in Section 3.3. In this example, the brands included in the choice sets vary
across choice tasks. The absent dimensions correspond to the brands that are excluded
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from each choice task. One method of modelling this data is to assume independence
of the random utilities. We will show that this assumption distorts the posterior
inference because the specification with full error covariance detects substantial error
correlations in the random utilities. We also consider a specification that associates
utility-shocks with order of presentation, and we find that the model with unrestricted
� associated with brands outperforms both alternative specifications in terms of out-
of-sample predictive ability.

The 326 subjects in the experiment were purchasing managers of information tech-
nology hardware and software. The experiment consisted of five brands of personal
computers. Each subject was presented with eight choice tasks. Each choice tasks
consisted of three descriptions of personal computers, and each description included
one of the five brands. Subjects could also choose “None of the Above,” which we
used as the base choice by setting its utility to zero. If “None of the Above” was
selected, we assumed that the utilities for the PC profiles in the choice task were less
than zero. If a PC was selected, the utility of its profile was greater than zero. In ad-
dition to brand, there were four product attributes: Performance, Channel, Warrantee,
and Service, each with three levels, and there were four price levels.

Table 5 describes the attributes and their dummy variable coding. The attribute
levels were balanced across profiles. Each choice task was randomly constructed from
the brands and attributes with some utility balancing. That is, none of the profiles in
a choice task obviously dominated the others, such as a high performance computer
with a low price. Each brand appeared in approximately 60% of the choice tasks.
Brands A and B are generally considered to be premium brands, while Brands D and
E are value brands. The aggregate choice shares were 24.5% for Brand A, 19.1% for
Brand B, 17.4% for Brand C, 14.1% for Brand D, 12.0% for Brand E, and 12.8% for
“None of the Above.” The brands were also randomized across presentation order in
a choice task. The choice shares by presentation order were approximately equal with
2% spread between the first and third choices. The survey also collected demographic
information and information about the purchasing manager’s firm. The subset of these
covariates that we use in this example are also presented in Table 5.

We will use the HB-MNP model from Section 3.3, which is derived from the random
utility model in Eqs. (7) and (8). We used the first seven choice tasks for calibration and
the last choice task, which varies across subjects, for hold-out predictions. The model
for subject-level heterogeneity is given by Eq. (5), and the prior distributions are given
by Eq. (6). We fitted three models to the data. Model 1 used a full error covariance
matrix (var(εi, j ) = �) for all five brands concepts. This implies that a subject’s brand
preference consists of fixed (partworths for brand) and random (unobserved utility-
shocks) components. A subject’s brand partworths are assumed to be fixed through
out the conjointstudy, while the utility-shock changes with choice task. One possible
reason for associating the utility-shocks with brands is to related the CBC model-
specification to standard scanner-data specifications reviewed in Section 2. The goal
underlying such aspecification is to model unobserved similarities between brands
while allowing additional unobserved variables to perturb each subject’s utility task
by task. Such random-seeming perturbations can arise from pure white-noise error in
judgement, or from the possibility that attribute levels modify the subject’s perception
for the brand. For example, if a premium brand lacks premium features or has a low
price in a particular profile, subjects may view these profiles in a much different light
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Table 5 CBC experiment: Attributes and covariates

Conjoint design Covariates
Dummy variable Attribute level Dummy variable Attribute level

Brand Expect to pay
Brand A A Pay Low Low
Brand B B Medium – base
Brand C C Pay High High
Brand D D

Expertise for PC purchases
Brand E E Novice – base

None – base Expert Expert

Performance
Respondent gender

Low Prf Below average Man – base
Average – base Female Woman

High Prf Above average
Company Size

Sales Channel Small firm Small
Tele buy Telephone Medium – base

Retail store – base Large firm Large
Site Buy Sale on site

Warrantee
Short Wrt 90 day

1 year – base
Long Wrt 5 year

Service and Repair
MFG Fix Ship back to manufacturer

Local dealer – base level
Site Fix On-site service

Price
Low – base

Price 2 Medium-low
Price 3 Medium-high
Price 4 High

than if the premium brand has premium features and high price. That is, the overall
evaluations are different than what would would expect if the fixed brand preference
are added to the attribute partworths. These differences then become part of the error
term, which varies among all profiles.

Model 2 assumed that the covariances between utility-shocks in Model 1 were
zero, and Model 3 associated the utility-shocks with the presentation-order of the
profiles instead, using a full unrestricted 3 × 3 �. Except for the specification the
error variance, the three models were identical. In Model 2, inverted gamma priors
were used for the error variances, and their parameters were set to induce roughly
the same prior mean and variance as the marginal priors from Model 1 and 3, so that
potential differences in the estimation results can not be attributed to differences in
prior specifications.
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Table 6 CBC probit: Posterior mean of rror variances and covariances

Brand A Brand B Brand C Brand D Brand E

Model 1
Brand A 0.889 0.174 − 0.156 − 0.716 0.040
Brand B 0.174 0.860 0.055 0.037 − 0.564
Brand C − 0.156 0.055 0.961 − 0.247 − 0.754
Brand D − 0.716 0.037 − 0.247 0.875 0.135
Brand E 0.040 − 0.564 − 0.754 0.135 1.000

Model 2
Brand A 1.042 0.000 0.000 0.000 0.000
Brand B 0.000 1.041 0.000 0.000 0.000
Brand C 0.000 0.000 1.053 0.000 0.000
Brand D 0.000 0.000 0.000 1.036 0.000
Brand E 0.000 0.000 0.000 0.000 1.000

Model 3 Order 1 Order 2 Order 3

Order 1 1.386 − 0.569 − 0.617
Order 2 − 0.569 1.107 − 0.535
Order 3 − 0.617 − 0.535 1.000

Model 1 uses a full, error covariance matrix for brand concepts; Model 2 assumes that error are independent;
and Model 3 uses a full, error covariance for presentation order.

The MCMC used 50,000 iterations for burn-in, and 50,000 iterations for estimation.
After the burn-in every fifth iteration was saved for estimation purposes for a total of
10,000 iterations. The point of comparing the three models is to demonstrate that the
assumption about the random utilities’ error covariance matrix does matter and has
practical implications.

Table 6 reports the estimated variances and covariances for the three models. The
models were identified by setting the error variance for Brand E to one. In Model 1,
the error variances are close to one. Brand A and B have a slightly positive correlation.
Brand E has sizeable, negative covariances with Brands B and C, and Brands D and
A also have negative covariances. These covariances are important in interpreting the
model and can greatly impact market share. For example, if a purchasing manager
likes Brand A more than what the model predicts from his or her part-worths, then
this manager would tend to dislike Brand D more than predicted from his or her part-
worths. If Brand E was introduced into a market that only has Brands A, B, and C, then
Brand E would tend to draw more heavily from customers whose utilities for Brands
B or C are below their expectations. In contrast, Model 2, with uncorrelated utilities,
has the IIA property, and Brand E would draw from Brands A, B, and C proportional
to their market shares. In Model 3, the correlations of the error terms, which are
associated with presentation order, are negative. This implies that if a subject prefers
the first profile more than attributes alone would predict, then he or she tends to prefers
the second and third profiles less than the attributes would predict. This result holds
true for all of the profiles.

Table 7 displays the estimated regression coefficients, � in Eq. (5), that relate the
individual-level part-worths to the subject or firm level covariates. To simplify the
comparison between the three models, only posterior means that where greater than
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Table 7 CBC Probit: Explained heterogeneity in selected subject-level part-worths

Constant Low pay High pay Expert Female Small firm Large firm

Model 1
Brand A 0.790
Brand B 0.890 −0.394
Brand C 0.518 0.365 −0.350
Brand D 0.298 −0.391
Brand E −0.421
Price 2 − 0.236
Price 3 −0.864 0.329
Price 4 −1.118 −0.431 0.253 0.240

Model 2
Brand A 1.361
Brand B 1.421 −0.701
Brand C 1.052 −0.709 −0.417
Brand D 1.021 −0.940 −0.548
Brand E 0.690 −0.965
Price 2 −0.309
Price 3 −1.031 0.421
Price 4 −1.456 −0.578 0.475

Model 3
Brand A 0.644
Brand B 0.511
Brand C 0.476 0.383 0.410
Brand D 0.351
Brand E −0.494
Price 2 −0.396
Price 3 −0.705
Price 4 −1.120 −0.374

Model 1 uses a full, error covariance matrix for brand concepts; Model 2 assumes that errors for brand
concepts are independent; and Model 3 uses a full, error covariance matrix for presentation order. Posterior
means that are less than two posterior standard deviations in absolute value are suppressed.

two posterior standard deviations in absolute value are displayed, and to keep the
table the a manageable size, only the coefficients for Brand and Price are shown.
(Coefficients for other partworths were significant, but their interpretation is not
particularly relevant to this paper’s theme.) The direction of the results is similar for
the two models. The coefficients for Model 2 tends to be somewhat larger than from
Models 1 and 3. However, it is difficult to discern generalizable results about the
impact of the error structure on the explained heterogeneity.

Table 8 presents the estimated population variances, the diagonal elements of �,
of the error terms in Eq. (5). The covariances for Models 1 and 2 are significantly
different from zero, but not very large. A distinguishing feature of the models is that
the variances for Model 2 tend to be larger than for Models 1 and 3. In fact, the
natural logarithms of the determinants of the full covariance matrix � are –64.85
and –65.10 for Models 1 and 2 and –39.32 for Model 2. The ln-determinant is a
measure of the error variation with larger numbers representing greater variation in
unexplained heterogeneity. It appears as though incorrectly assuming that the latent
utilities are independent forces over estimation of unexplained heterogeneity in the
between-subjects model to compensate for the lack of fit in the within-subjects model.
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Table 8 CBC probit: Unexplained heterogeneity in subject-level part-worths

Model 1 Model 2 Model 3

Brand A 0.307 0.687 0.407
Brand B 0.117 0.290 0.081
Brand C 0.030 0.187 0.052
Brand D 0.173 0.507 0.214
Brand E 0.254 0.617 0.340
Low Perfomance 0.421 0.833 0.072
High Performance 0.144 0.317 0.077
Telephone Channel 0.015 0.048 0.019
Site Channel 0.022 0.089 0.026
Short Warranty 0.122 0.255 0.076
Long Warranty 0.129 0.181 0.109
MFG Fix 0.165 0.452 0.100
Site Fix 0.020 0.139 0.021
Price 2 0.022 0.066 0.042
Price 3 0.033 0.105 0.042
Price 4 0.094 0.200 0.065
Ln Determinant −64.854 −39.322 −65.099

Diagonal elements (variances) of the posterior means of �, the error covariance matrix for the partworths.
Model 1 uses a full, error covariance matrix associated with brand concepts; Model 2 assumes that brand-
concept errors are independent; and Model 3 uses a full, error covariance matrix associated with presentation
order.

One way to ascertain the overall effect of these differences in error structure is to
examine the predictive performance for the models. The eighth and last choice task
was used as a hold-out sample for prediction. Because the choice tasks and profiles
were randomly constructed, different subjects had different hold-out choice tasks. We
compute two measures of predictive performance: the hit rate and the Brier score.
The hit rate is the proportion of time that the maximum of the predicted utilities
corresponds to the subjects’ selected profile in the hold-out sample. The Brier score
(c.f. an Gordon and Lenk, 1991, 1992) is a root mean squared error measure between
the profile selections (1 if selected and 0 if not) and predictive probabilities for the
profiles. The Brier scores are computed within the MCMC iterations and averaged
over iterations, thus reflecting parameter uncertainty. The following table presents
these predictive measures for the three models. On both measures, Model 1 predicts
the best; Model 2 the second best, and Model 3 is the worst. Model 1 performs
substantially better than other two models. The hit rate for Model 1 is 8.4% better
than Model 2 and 16.1% better than Model 3. These improvements are striking given
that the only change in the models is the structure of the error terms for the random
utilities.

Predictive Performance

Hit rate Improvement Brier score Reduction

Model 1 56.6% 0.377
Model 2 52.2% 8.4% 0.479 21.4%
Model 3 48.8% 16.1% 0.508 25.8%
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5. Conclusion

Absent dimensions occur when both the independent and dependent variables are
absent for one or more components in multivariate data. This situation is qualitatively
different from standard missing data problems and frequently is not considered to be
a problem. However, absent dimensions can negatively effect researcher’s modelling
choices. Naive methods of circumventing absent dimensions include deleting observa-
tions with absent dimensions, restricting the dimensions to a subset of dimensions that
is fully present, or assuming independence among the dimensions. All three of these
approaches represent compromises: deleting partial observations wastes information;
restricting the phenomenon to a common subset of dimensions limits the ability to
generalize the inference; and simplifying assumptions, such as independence, distort
the inference.

In the models considered in this paper, absent dimensions make it difficult to
estimate covariance matrices because the inverted Wishart prior for the covariance
matrix is no longer conjugate. We propose a data imputation scheme that facilitates
covariance estimation by making the inverted Wishart distribution conjugate for the
completed data matrix. The Metropolis algorithm is an alternative to data imputa-
tion; however, data imputation is fast and effective and circumvents implementation
issues associated with Metropolis algorithms, such as choice of proposal distribution,
acceptance rates, and mixing of that omnibus method.

The residual augmentation method outlined in this paper is a minor modification
of existing MCMC procedure and only requires an additional vector to denote present
and absent dimensions for each observation. The paper presents simulation studies
that document the effectiveness of the algorithm and a choice based conjoint study
that illustrates how skirting the problem by assuming independent utility-shocks can
distort the results.

The main contribution of this paper to Bayesian estimation of MNP choice-models
is the new ability of the analyst to decouple utility-shocks from choice-alternatives.
While prior Bayesian estimation methods required that utility-shocks be associated
with alternatives in a one-to-one mapping, the proposed method allows them to be
associated with almost any discrete attribute of the alternatives.

Appendix

A: MCMC algorithm

This appendix gives the remainder of the MCMC algorithm for the HB-Multivariate
regression model in Section 3.2. The “within” units model is:

Yi, j = Xi, jβi + εi, j for i = 1, . . . N ; and j = 1, . . . , ni ,

and the “between” units model is:

βi = �′zi + δi for i = 1, . . . , n
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The prior distributions are:

[�] = I Wm
(

f0,�, S0,�

)
; [�] = I Wp

(
f0,�, S0,�

)
; and [vec(�′)] = Npq (u0, V0)

where vec(�′) stacks the rows of �.
Then the MCMC draws are:

[βi|Rest] = Np(bN ,i , BN ,i )

BN ,i =
⎛

⎝�−1 +
ni∑

j=1

X ′
i, j�

−1 Xi, j

⎞

⎠
−1

bN ,i = BN ,i

⎛

⎝�−1�′zi +
ni∑

j=1

X ′
i, j�

−1Yi, j

⎞

⎠

[vec(�′)|Rest] = Npq (uN , VN )

VN =
(

V −1
0 +

[
N∑

i=1

zi z
′
i

]
⊗ �−1

)−1

uN = VN

(
V −1

0 u0 +
N∑

i=1

zi ⊗ �−1βi

)

[�|Rest] = I Wm
(

fN ,�, SN ,�

)

fN ,� = f0,� +
N∑

i=1

ni

SN ,� = S0,� +
N∑

i=1

ni∑

j=1

[
Yi, j − Xi, jβi

] [
Yi, j − Xi, jβi

]′

[� | Rest] = I Wm
(

f0,�, SN ,�

)

fN ,� = f0,� + N

SN ,� = S0,� +
N∑

i=1

[
βi − �′zi

] [
βi − �′zi

]′
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