
Optimal selling strategies when buyers
name their own prices

Robert Zeithammer1

Received: 14 August 2014 /Accepted: 25 May 2015 /Published online: 28 June 2015
# Springer Science+Business Media New York 2015

Abstract This paper models a name-your-own-price (NYOP) retailer who allows
buyers to initiate their retail interactions by describing a product and submitting a
binding bid for it. The buyers have an outside option to buy the same good for a
commonly known posted price that also acts as an informative upper bound on the
cost the NYOP retailer faces. We conceptualize a selling strategy of such an
NYOP retailer to be the probability that a buyer’s bid gets accepted. The selling
strategy is a function of only the bid level; it does not depend on the particular
realization of the retailer’s procurement cost. Using mechanism-design techniques,
we characterize the optimal selling strategy and the equilibrium bidding function
that best responds to it. We show that the optimal strategy implements the first-
best ex-post optimal mechanism: for every cost realization, the retailer can make
as much profit as he would if he could learn his cost first and use the optimal
mechanism contingent on it. The complexity involved in credibly communicating
an entire bid-acceptance function to buyers can make the first-best strategy
impractical in some real-world markets, so we also analyze several simpler NYOP
strategies: setting a minimum bid, charging a participation fee, and accepting all
bids above cost. We find that under many scenarios, the minimum-bid strategy
dominates the other simpler strategies and achieves a majority of the maximal
profit improvement available from the first best strategy. However, NYOP retailers
in thin markets can do better by charging participation fees than by setting
minimum bids.
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1 Introduction

Name-your-own-price (NYOP) selling allows buyers to initiate their interactions with a
retailer by describing a product and submitting a binding bid for it. The retailer accepts the
bid whenever it exceeds his secret acceptance threshold, and he keeps the difference
between the bid and his procurement cost as profit. NYOP selling was pioneered by
Priceline.com in 1998 in the travel industry, and has since been adopted globally by a range
of online retailers in different product categories such as white goods (prisminister.dk),
restaurant meals (chiching.com), and designer fashion accessories (nyopoly.com). This
paper considers several strategies an NYOP retailer can use to increase his profits.

Most existing models of NYOP selling assume the retailer is essentially passive and
accepts all bids above his procurement cost.1 Priceline does not officially disclose the
details of its bid-acceptance algorithm, but researchers knowledgeable about Priceline’s
suppliers report a policy very similar to accepting all bids above cost (Anderson 2009;
Anderson and Wilson 2011). Chiching.com keeps a 15 % commission, effectively
reducing the consumer bids and delegating the NYOP retailer role to the restaurant. The
restaurant may in turn be tempted to accept bids above its opportunity cost. Although
passively accepting all bids above cost is easy to explain and guarantees positive profits for
the NYOP retailer, it cannot be profit maximizing because it does not exercise any market
power. Can an NYOP retailer do anything to increase his profits from the passive
benchmark? How should we even conceptualize the space of possible NYOP selling
strategies? This paper makes two contributions: First, it defines a large set of such
strategies, and uses mechanism-design principles to characterize the profit-maximizing
one under general assumptions about the distributions of buyer valuations and retailer cost.
Second, it compares the first-best strategy with several second-best simpler strategies: a
minimum-bid strategy whereby low bids get rejected, a participation-fee strategy akin to a
two-part tariff, and a non-NYOP fixed posted price strategy.

Our model of the market in which the NYOP retailer operates assumes the object the
NYOP retailer sells can also be obtained in an outside spot market for some commonly
known price. For example, the object sold can be a particular designer handbag offered by
Nyopoly.com (the NYOP retailer), and the outside market price is the lower of the price
posted in the designer’s own store for the same handbag and that posted by third-party
retailers (if any). Alternatively, the object sold can be a seat on a particular flight sold by
Priceline (the NYOP retailer), and the outside market price is the lowest price for that seat
posted by other travel retailers with levels of product opacity similar to that of Priceline2

(e.g., Hotwire). We make the natural assumption that the outside market price is an
informative upper bound on the procurement cost the NYOP retailer faces at that moment.

We define an NYOP selling strategy to be the probability the NYOP retailer accepts
a bid as a function of the bid level and the commonly known outside spot-market price.
For example, the selling strategy implied by accepting all bids over cost (the commonly
assumed policy described above) is just the cumulative distribution function of the

1 Amaldoss and Jain 2008; Fay 2009; Wang et al. 2009, and others. Please see Anderson and Wilson (2011)
for a review of analytical approaches to modeling NYOP selling.
2 Priceline makes its offering opaque (Fay 2008) by hiding the airline name and exact time of departure. Other
retailers, e.g., byopoly.com, prisminister.dk, or chiching.com, do not make the products opaque. We abstract
away from opacity in this paper because it is an orthogonal issue. Please contact the authors for the optimal
strategy when the retailer’s offering is opaque but the outside market is transparent.
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procurement cost. We propose an NYOP retailer should actively manage his selling
strategy and strive to communicate it credibly to the buyers.

Our first contribution is a characterization of the optimal NYOP selling strategy and
the buyers’ bidding function that best responds to it. The NYOP retailer we consider
needs to set a single selling strategy for a range of possible procurement costs, but
learns the exact cost realization before making his bid-acceptance decision. We have
two mutually related reasons for this modeling choice: First, NYOP retailers sometimes
only query their suppliers for current cost quotes after receiving a bid.3 For example,
chiching.com approaches participating suppliers only after the bid is finalized. Second,
even if the retailer can costlessly look up his current cost for any product offered and
post the optimal selling price, 4 the buyers he faces may prefer to bid instead of
purchasing at a posted price. We assume that NYOP selling emerged as a natural
response to such buyer activism, which was in turn enabled by the Internet. In other
words, we take the existence of NYOP selling as exogenously given. For modeling
clarity, we adopt the assumption that the retailer needs to set his selling strategy before
learning the exact cost realization, and base it only on the distribution of costs.
However, all our results will also hold for a retailer who privately knows his cost
before a buyer bid arrives, but cannot feasibly post a fixed selling price contingent on it.

To derive the optimal NYOP strategy, we adapt mechanism-design techniques to
accommodate the retailer’s ex-ante lack of cost information. We first derive the optimal
direct-revelation mechanism and then characterize its NYOP implementation. In the
direct-revelation mechanism, the optimal allocation rule conditional on a cost realiza-
tion is not surprising: the retailer should accept buyer valuations above the monopoly
price implied by the realized cost. However, NYOP selling is not a direct-revelation
mechanism, because successful NYOP buyers pay their bids and hence bid strictly
below their valuations. Interestingly, we find that under standard regularity conditions
of Myerson (1981), the optimal allocation rule from the direct-revelation mechanism
can be implemented even when buyers pay their bids and bid strategically.

The optimal NYOP selling strategy (i.e. the optimal bid-acceptance probability
function) involves a minimum bid above which higher bids result in higher probabil-
ities of acceptance. The optimal strategy is unique on an interval of low bids, but
consists only of an upper bound on an interval of higher bids. The outside spot market
influences both the buyer’s bidding strategy (it involves a jump-discontinuity and
pooling at a particular bid-level) and the retailer’s bid-acceptance probability (it accepts
high-enough bids with certainty, regardless of the cost realization), but we show that it
does not hinder NYOP implementation of the optimal allocation.

The nature of our optimal solution suggests a theoretically interesting corollary: it
implies that NYOP can be an ex-post optimal selling strategy. Riley and Zeckhauser
(1983) show that a monopolist who knows his procurement cost and is selling one
indivisible object to a single risk-neutral buyer should set a posted price and make a
take-it-or-leave-it offer. Because optimal NYOP selling results in the same allocation as
such cost-contingent monopoly pricing, the NYOP retailer makes as much profit as he

3 Several existing models make an analogous assumption, e.g. Amaldoss and Jain (2008) or Spann et al.
(2010).
4 Posted pricing would be the optimal cost-contingent mechanism for such a retailer (Riley and Zeckhauser
1983).
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would if he could learn his cost first and use the optimal mechanism contingent on it.
The key intuition behind the ex-post optimality of NYOP is that although the retailer
does not know his cost at the time of setting his strategy, he learns it before making the
bid-acceptance decision, and hence eventually has all the pieces of information needed
for implementation of the optimal allocation. In other words, NYOP selling can
accommodate buyer activism in the form of a desire to submit bids before the
procurement cost is realized, without any loss of retailer profit.

The NYOP retailer needs to credibly communicate the strategy to prospective
buyers. Credibility requires commitment to a particular acceptance probability for every
possible bid level, but is does not require the retailer to credibly communicate his cost
realization or commit to any action contingent on a cost realization. We devote a special
subsection (5.5) to a discussion of two mechanisms that can facilitate credibility in the
real world: reputation and a third-party auditor.

The complexity involved in credibly communicating an entire bid-acceptance func-
tion to buyers can make the first-best strategy impractical in some real-world markets.
Our second main contribution is a thorough exploration of second-best NYOP selling
strategies that are simpler to credibly communicate. Specifically, we analyze two kinds
of retailers who passively accept all considered bids above their cost, but can commit not
to consider certain bids. First, we analyze a seller who can commit to only consider bids
above some minimum level—a strict simplification of the first-best strategy. Commu-
nicating the minimum bid is simpler because the retailer only needs to post a single
number. Credibility is easier to achieve because the minimum bid is analogous to a
public reserve in an auction—a standard feature in real-world markets. Second, we
consider a seller who can commit to only consider bids by buyers who paid a partici-
pation fee—a two-part-tariff strategy proposed by Spann et al. (2010, 2015). We also
compare these two second-best NYOP strategies with the non-NYOP strategy of posting
a fixed selling price before learning the cost realization. We are able to compare the
profitability of these alternative strategies analytically when the distributions of valua-
tions and costs are both uniform. To achieve the profitability comparison outside the
uniform-uniform setting, we rely on numerical approximations of the achievable profits
under a variety of assumptions about the shape of both key distributions (increasing,
decreasing, concave, convex, U, inverted-U) in a full-factorial design.

Not surprisingly, we document that all “active” strategies strictly outperform the passive
strategy of accepting all bids above cost. More surprisingly, we find the minimum-bid
strategy achieves much of the maximum theoretical profit (i.e., the profit of first best
strategy) in most of our simulation scenarios. Specifically, the minimum-bid strategy does
particularly well when the distribution of valuations involves a lot of consumers who can
afford the outside option, and when the density of valuations around the optimal minimum
bid level is not downward sloping. Regarding the comparison of simpler strategies with
each other, the minimum-bid strategy obviously weakly dominates the fixed posted-price
benchmark.When the distributions of valuations and costs are both uniform, theminimum-
bid strategy also strictly dominates the participation-fee strategy for all levels of the outside
market price. However, we also find situations in which this ordering reverses: when the
distributions of valuations and costs are such that the gains from trade are small, partici-
pation fees outperformminimum bids.We conclude that much of the “heavy lifting” of the
first-best strategy is often accomplished by the much simpler minimum-bid strategy, but
NYOP retailers in thin markets can do better by charging participation fees.
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2 Related literature

Although NYOP selling has generated a lot of academic interest as a novel environ-
ment for studying consumer decision-making (e.g., Chernev 2003; Ding et al. 2005;
Spann and Tellis 2006; Spann et al. 2012, and others), relatively less is known about the
selling strategy NYOP retailers should use to maximize their profit (we review the
relevant contributions in detail below). This paper contributes to the small but growing
theoretical literature about optimal NYOP selling.

As noted in the Introduction, most existing models of NYOP selling assume the
retailer accepts all bids above his procurement cost. All other existing papers restrict
attention to specific variants of possible strategies, for example, the extent of random-
ization in the acceptance rule (Shapiro 2011) or minimum markups and participation
fees (Spann et al. 2012, 2015). By contrast, this paper is the first to apply mechanism-
design techniques to the problem of NYOP selling, thereby considering a much larger
set of possible strategies.

The most closely related paper is by Spann et al. (2010, 2015), who show that an
NYOP retailer analogous to the one assumed herein profits more from charging a
participation fee than from charging a minimum markup (or from some combination of
a fee and a minimum markup). Whereas they assume both distributions that parame-
terize the model are uniform, we prove our results in full generality. We show that no
participation-fee strategy can implement the same allocation as the optimal direct-
revelation mechanism, and so employing participation fees is strictly less profitable
than employing our optimal mechanism.

We take the existence of NYOP selling as given, but our results are relevant to the
literature that tries to rationalize the existence of NYOP. One theoretical justification for
NYOP selling is as a second-best solution to the optimal selling problem that accom-
modates buyer activism enabled by the Internet. We show that under standard regularity
assumptions about the distribution of buyer valuations, NYOP selling can accommo-
date buyer activism without compromising retailer profits: despite having to set his
selling strategy (i.e., his schedule of bid-acceptance probabilities) before learning his
cost of production, the NYOP retailer can achieve first-best ex-post profits. Therefore,
NYOP selling does not actually give any more market power to the buyers. In other
words, the first-best optimal strategy allows the retailer to recapture his market power
despite buyers actively bidding. We propose that even if our strategy is not always the
most practical, it thus serves as an important theoretical benchmark.

In another closely related work, Shapiro (2011) shows buyer risk aversion is a way
to rationalize the existence of NYOP selling. Specifically, he shows the NYOP
monopoly profit is higher than the posted-price monopoly profit when buyers are risk
averse, because such buyers bid more than risk-neutral buyers to avoid the risk of not
winning at all. Shapiro’s (2011) model makes several of the same assumptions we do:
his retailer can commit to a probabilistic bid acceptance, and he sometimes faces a non-
strategic premium posted-price retailer akin to the one we assume. In contrast to
Shapiro (2011), our buyers are risk neutral and our retailer is ex-ante uncertain about
his procurement cost. Extending our model with ex-ante retailer uncertainty to the case
of risk-averse buyers is not tractable to us, but Shapiro’s logic suggests an optimal
NYOP retailer facing risk-averse buyers would strictly outperform his posted-price
counterpart instead of merely getting the same profit as he does under risk neutrality.
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Several other papers consider NYOP retailers who accept all bids above their cost,
and show that even such a passive NYOP strategy may dominate posted pricing in a
competitive setting (Fay 2009) or as a price-discrimination tool (Wang et al. 2009;
Shapiro and Zillante 2009). Such models rely on buyer heterogeneity in an inherent
preference for buying via NYOP, perhaps because of varying frictional costs (Hann and
Terwiesch 2003) or the varying impact of the risk arising from opacity of the NYOP
offering (Fay 2009). The buyers in this paper instead care only about their surplus, and
do not heterogeneously favor posted-price buying over NYOP, or vice versa. However,
our results can be used as a building block in a competitive model because we
characterize the best response of an NYOP retailer to any regular demand function.

Chernev (2003) and Spann et al. (2012) show that consumer behavior is different
when the NYOP retailer allows any price to be named (a true “name your own price” in
Chernev’s nomenclature) compared to when the NYOP retailer presents a menu of
prices (called “select your price” by Chernev). The mechanism proposed here is more
in line with “select your price.” Moreover, we suggest the retailer should present not
only a menu of prices, but also the associated acceptance probabilities. Such an
institution facilitates credibility, simplifies bidding, and enables the retailer to better
learn consumer preferences by fixing bidder beliefs.

NYOP selling is also related to auction theory in that it corresponds to a first-price
sealed-bid auction with a single bidder (the buyer) and a stochastic secret reserve (the
retailer’s bid-acceptance function). The implementability of the optimal mechanism via
NYOP selling can thus be interpreted as an extension of the revenue equivalence
between first-price and second-price auctions, itself a well-known result in auction
theory (Vickrey 1961; Myerson 1981): the direct-revelation mechanism we find is
equivalent to a set of second-price sealed-bid auctions, each with an optimal reserve
price (different for different costs) and only one bidder. Optimal NYOP selling can be
thought of as a set of first-price sealed-bid auctions, each of which is constructed to
accept a bid exactly often enough to maintain revenue equivalence with the corre-
sponding second-price auction.

We analyze a static model in which each buyer is restricted to a single bid, but real-
world bidders may manage to bid multiple times. Fay (2004) uses a stylized model to
show that repeat bidding does not necessarily erode retailer profits, as long as the
retailer is aware of the behavior and uses the right dynamic thresholds. In a more recent
paper on repeat bidding, Chen (2012) suggests Priceline’s “lockout period restriction, a
design alleged to protect sellers, can actually benefit customers,” and links the issue to
bargaining theory. Extending our setup to a dynamic environment is beyond the scope
of this paper, but we propose that something akin to Fay’s (2004) finding would
replicate: as long as the retailer anticipates repeat bidding and conditions his
acceptance-probability strategy on the number of bids the bidder has submitted to date,
the retailer should be able to extract first-best profits from the sequence of interactions.

3 Model

Our notation follows Krishna (2002) whenever possible, and it is summarized for easy
reference in Table 1. A risk-neutral buyer is interested in buying one particular
indivisible object. The buyer’s valuation x of the object is drawn from a continuous
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distribution F(x) with density f(x) and support on x; x�½ . Assume the virtual value

ψ xð Þ≡x− 1−F xð Þ
f xð Þ is increasing, that is, that the distribution F is regular in the sense of

Myerson (1981). The virtual value function is a central concept in the theory of mecha-
nism design, and it represents the marginal revenue a seller can extract from a buyer of
type x in a direct-revelationmechanism (see Krishna 2002 for a more detailed exposition).

The object is readily available in an outside posted-price market for a commonly
known price ψ−1 0ð Þ<p≤x, where ψ−1(0) is the price a monopolist with zero marginal
cost would charge for the object. When the buyer does not buy the object from either
retailer, her payoff is zero. Following Spann et al. (2010) and Shapiro (2011), we assume
the NYOP retailer is small in that he takes the posted price as fixed, and the outside spot
market does not adjust its posted price in response to the NYOP retailer’s strategy.5

An NYOP retailer can procure the object for a procurement cost c~H(c), where the
distribution H has full support on [0,p]. In other words, the outside posted price is a
public upper bound on the NYOP retailer’s procurement cost. For example, the NYOP
retailer can be Priceline selling excess capacity on a particular flight, whereas p is the
price of a seat on the same flight posted by Hotwire (a posted-price site with similar
detail of product description, also known as “opacity”). Alternatively, the NYOP
retailer Nyopoly could be reaching price-conscious consumers of designer handbags,
whereas p is the price of the same handbag at the designer’store.6 The entire model is
thus parameterized by the two distributions F and H, where the support of the latter
depends on p. A lower p is both bad news (tougher competition) and good news (lower
expected cost) for the NYOP retailer.

Note that in our baseline model, we abstract from the fact that someNYOP products are
opaque—a feature pioneered by Priceline, and a potential source of differentiation between
the two retailers (Fay 2008; Shapiro and Shi 2008). Opacity is not intertwined with NYOP
selling in the real world: none of the other three retailers we mention in the Introduction
(chiching.com, prisminister.dk, nyopoly.com) are opaque. It can be shown that opacity
does not change our main result qualitatively. Please contact the authors for the optimal
strategy when the retailer’s offering is opaque but the outside market is transparent.

Timing of the game is as follows (please see the bottom timeline in Fig. 1): in the
beginning of the game, the NYOP retailer announces his bid-acceptance strategy A(b)≡
Pr(accept b) for all possible levels of bid b submitted by the buyer for the object. The
buyer then submits a binding bid. After receiving a bid, the retailer queries his suppliers
for a cost quote to learn his actual cost c and decides whether to accept the bid. At any
time during the game, the buyers can choose to buy from the posted-price outside
market and pay the price p. Figure 1 highlights the key contrast with posted pricing in
the timing of the cost information.

5 Because the two competitors are selling the same object, Bertrand competition would result if the outside
competitor responded. To prevent a complete collapse of profits, we could introduce horizontal differentiation
arising from heterogeneity in buyer inherent preference for NYOP over posted pricing similar to Hann and
Terwiesch (2003) or Fay (2009). Within such a larger model, our paper characterizes what the NYOP best
response would look like.
6 The underlying assumption is that the NYOP retailer does not have a special technology for producing the
object, but rather obtains the object from the same supplier as his posted-price competitors. Even after learning
the posted price, uncertainty about c remains because p is a relatively stable price, set to reflect long-run
revenue-management considerations and quite possibly a larger set of customers (as in Spann et al. 2010).
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To derive the optimal mechanism, we follow Myerson (1981) and the rest of the
mechanism-design literature, and assume the NYOP retailer can commit to any bid-
acceptance strategy A(b)≡Pr(accept b). In the second half of the paper, we relax this
assumption in several ways and explore the impact on retailer profits. When the retailer
has no pre-commitment ability, he obviously accepts all bids above c, so everyone
knows A(b)=Pr(b>c)=H(c), and the retailer’s announcement in the beginning of the
game contains no new information.

Before solving for the optimal bid-acceptance strategy, we summarize the impact of
the outside spot market on the demand the NYOP retailer faces. For any bid-acceptance
strategy, all buyers with x>pmimic the type x = p because they have a real option to buy
in the outside market when the price they name is rejected. In other words, the NYOP
retailer faces buyers with a distribution of net valuationsF on [0,p) and [1−F(p)] mass at
p. To see this fact, note the expected surplus U of an x > p buyer who bids b is

U b; xð Þ ¼ A bð Þ x−bð Þ þ 1−A bð Þ½ � x−pð Þ ¼ x−pð Þ þ U b; pð Þ; ð1Þ
where U(b,p) is the utility of the buyer with x = p. It is immediate that the same b that
maximizes U(b,p) also maximizes U(b,x). Intuitively, the buyer thus receives all of his
valuation in excess of p as surplus, and his participation with the NYOP retailer is akin to
free gambling in hopes of randomly getting a price below p.

4 Optimal direct-revelation mechanism

We use the revelation principle (Myerson 1981) to restrict attention to direct-revelation
mechanismswhereby the buyer reports her valuation truthfully.Much of thematerial in this
section is standard, so the details are relegated to the Appendix. The only deviation from a
textbook treatment (e.g., Krishna 2002) is the fact that the retailer does not know his cost c
when he sets his strategy, but he does learn c before making his bid-acceptance decision.

Seller commits to 

bid-acceptance policy
Buyer 

submits

bid b(x)

Seller follows rule

Seller commits to

a take-it-or-leave-it

Seller 

learns his 

cost c

Buyer accepts 

or rejects (c) 

Seller hands the 

object over iff

(c) accepted

Buyer can buy 

same object for p
in outside market

Name-your-own-price (NYOP) selling

Standard posted-price selling

Seller 

learns his 

cost c

time

time

Fig. 1 Timing of the NYOP game, as compared to standard posted pricing
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Knowing the cost before the acceptance decision needs to be made allows us to first
optimize the contingent bid-acceptance rule π(x,c)=Pr(allocate object to x when cost is c).
Not knowing the cost at the outset restricts the retailer to probabilistic assignments that are
only a function of x. Let q(x) be the probability that a buyer with x receives the object. A

retailer who is planning to use a given π(x,c) can only commit to q xð Þ ¼ ∫
p

0
π x; cð ÞdH cð Þ.

The aforementioned atom at p also provides an interesting wrinkle relative to the textbook
in that the optimal q is discontinuous at p. The optimal contingent bid-acceptance rule is as
follows (please see the Appendix for all proofs):

Proposition 1 The optimal contingent bid-acceptance rule in a direct-revelation mech-
anism is

π x; cð Þ ¼ 1 when x < p and c < ψ xð Þð Þ or when x ¼ p
0 otherwise

�
:

For every cost c, this rule achieves the same profit as a posted-price monopolist who
knows c before setting his price r*, namely, [1−F(r*(c))][r*(c)−c] where r*(c)=
min[ψ−1(c),p].

The allocation rule for x < p is familiar from the mechanism-design literature:
Myerson’s (1981) optimal reserve price applies for low buyers—for every x < p, the
retailer should sell (i.e., set π(x,c)=1) iff ψ(x)>c⇔x>monopoly price(c). In addition to
sometimes serving some of the low buyers, the retailer should also always sell to all
high-value buyers (x ≥ p) because p ≥ c holds for all c by construction.

The intuition for π(x,c) goes back to a simple posted-price monopolist with a
marginal cost c < p who faces demand [1−F(z)] for all prices z < p, and a point mass
of [1−F(p)] customers willing to pay exactly p. Such a monopolist charges precisely
min(ψ−1(c),p) to maximize his profit. Because the retailer can condition his π(x,c) on c,
he can effectively get the ex-post monopoly profits. In other words, for every cost c, he
can get the same profit as a posted-price monopolist who knows c before setting his
price. Note that the optimal allocation applies regardless of the distribution of retailer
cost c, but the implied bid-acceptance strategy will depend on H.

4.1 Example: F and H uniform

Throughout the paper, we will use the example of F = Uniform[0,1] and H =
Uniform[0,p] to illustrate the findings in closed form. When F is uniform on
[0,1], ψ(x)=2x−1, so the complete optimal allocation is sell⇔x > 1þc

2 or x ¼ p.

Note that only buyers with x > 1
2 have any chance of winning, so the retailer

effectively sets a minimum bid of 1
2. The retailer makes a profit of

ΠA pð Þ ¼ Ec ∫
1

min 1þc
2 ;p½ �

2x−1−cð Þdx
" #

, where the A subscript denotes the first best

strategy by referring to the bid-acceptance strategy. When H is also uniform, the retailer’s

expected profit is ΠA pð Þ ¼ ∫
2p−1

0
∫

1þc
2

1
2x−1−c

p dx

 !
dcþ ∫

p

2p−1
∫
1

p

2x−1−c
p dx

 !
dc ¼ 2p3þ6p 1−pð Þ−1

12p
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Note that regularity of F in the sense of Myerson (1981) is not required for posted
pricing to be the optimal strategy contingent on c: Riley and Zeckhauser (1983) show
that the optimal π(x,c) is a step function with a single step even when ψ(x) is not
increasing in x. Had we not assumed regularity in this section, Proposition 1 would be
modified to π(x,c)=1 when either x>x* for some x* that satisfies c=ψ(x*), or when x
= p (see Proposition 1 of Riley and Zeckhauser 1983). Exposition is easier with a
regular F, and the next section will show that regularity is actually a necessary
condition for an implementation of the optimal allocation rule through NYOP selling.

The form of the optimal allocation rule in Proposition 1 is not surprising. The key
question of this paper is how to implement it within the NYOP institution. The retailer
could simply promise to charge a price of min(ψ−1(c),p) to all bidders with bids that
exceed it, preserving the incentive to bid truthfully. In other words, the retailer could
run a Becker et al. (1964) procedure with a carefully selected distribution of prices.
However, an NYOP retailer promises to charge buyers their bids whenever a sale
occurs. In response to paying their bids, buyers shade their bids below their private
valuations. In the next section, we derive the buyer’s bidding function and the retailer’s
bid-acceptance rule that implements the optimal mechanism.

5 Implementation of the optimal mechanism through NYOP

An NYOP retailer promises to charge buyers their bids whenever a sale occurs. One
advantage of accepted buyers paying their bids (vs. the optimal monopoly price
conditional on the realized c) is that the retailer does not need to credibly communicate
his c to the buyers. However, how buyers will respond is not a priori clear. Will they bid
according to an increasing (and hence invertible) bidding function that allows the retailer
to implement his optimal allocation, or will they somehow obfuscate their type to avoid
being exploited? In this section, we show constructively that the buyers’ best-response
bidding function is invertible—and the NYOP retailer can thus implement the optimal
allocation rule described in Proposition 1—if and only if the virtual value ψ(x) is
increasing in x, irrespective ofH. In other words, regularity of F in the sense ofMyerson
(1981) is necessary and sufficient for an NYOP implementation of the optimal mech-
anism. The proof proceeds in three steps, each captured in a separate lemma:

1) Derivation of the bidding strategy for low-valuation bidders (x < p)
2) Derivation of the bidding strategy for high-valuation bidders (x = p)
3) Specification of the optimal bid-acceptance probability for intermediate bid levels

5.1 Bidding strategy for low-valuation bidders (x < p)

First, consider a buyer with ψ−1(0)<x<p who follows a bidding strategy β(x).
Proposition 1 shows his probability of winning in the optimal mechanism is

q xð Þ ¼ ∫
p

0
π x; cð ÞdH cð Þ ¼ H ψ xð Þð Þ. The proof of Proposition 1 shows his expected

utility is U xð Þ ¼ ∫
x

x
q tð Þdt ¼ ∫

x

ψ−1 0ð Þ
H ψ tð Þð Þdt ¼ ∫

x

ψ−1 0ð Þ
x−tð ÞdH ψ tð Þð Þ, where the last
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equality follows from integration by parts. For NYOP selling to be revenue equivalent
with the optimal direct-revelation mechanism, the bidding strategy β(x) must satisfy:

U xð Þ ¼ q xð Þ x−β xð Þð Þ⇒β xð Þ ¼ x−
U xð Þ
q xð Þ ð2Þ

The structure of the candidate bidding function in Eq. (2) yields the following result:

Lemma 1 For bidders with x < p, the NYOP bidding strategy implied by the optimal
direct-revelation mechanism of Proposition 1 is increasing iff ψ is increasing, and it
can be characterized by β(x)=Ec[ψ

−1(c)|ψ−1(c)<x].

In words, Lemma 1 shows the optimal bid by a buyer with valuation x < p is the
average (over c) of monopoly prices the buyer would be willing to pay, namely, prices
below x. Given the regularity of F we assume throughout, the bidding function is
increasing, and hence invertible, so the retailer can infer each bidder’s x and apply the
allocation rule of Proposition 1. Interestingly, regularity of F is also required for a bidding
function that satisfies Eq. (2) to be increasing. Given the bidding function, we can also
solve for the cost-contingent bid-acceptance rule implied by the π(x,c) in Proposition 1:

c < ψ β−1 bð Þ� �
⇔b > β ψ−1 cð Þ� �

⇔b > Ecost ψ
−1 costð Þ��cost < c

� � ð3Þ
That is, the retailer accepts bids over the average monopoly price he would charge

for all costs below his actual cost realization.

5.2 Bidding strategy for high-valuation bidders (x = p)

Now consider a buyer with x = p, and recall that the optimal allocation rule is
to sell to this buyer for all levels of c. Because ψ(x)<x for all x<1, the limit of
π(x,c) as x approaches p from below involves an acceptance probability below
one for all x other than x = x special because ψ xÞ ¼ xð Þð . In other words,

A β−
p

� 	
¼ Pr c < ψ pð Þð Þ < 1;where β−

p ¼ limx→p− β xð Þ. To implement the needed

π(p,c)=1, a bid level β(p)>βp
− must exist such that buyers with x = p prefer to

bid β(p), but buyers with x < p do not deviate from bidding according to the
above β(x). Our next lemma shows that a unique such β(p) does exist:

Lemma 2 For bidders with a net valuation of the NYOP offering equal to the outside
price p, the NYOP bidding strategy implied by the optimal direct-revelation mechanism

of Proposition 1 is β pð Þ ¼ p− ∫
p

ψ−1 0ð Þ
H ψ zð Þð Þdz > β−

p :

The intuition behind Lemma 2 is that the surplus of a “high-valuation” buyer with
x = p is a sure gain of p−β( p). The high-valuation buyer is willing to bid β( p) as
long as β( p) is low-enough that the resulting surplus is at least as much as the
expected surplus of the highest low-valuation buyer (with x just under p) and
Proposition 1 pins the latter to be exactly the cumulated probability of winning
represented by the integral expression in Lemma 2. The highest low-valuation buyer
is in turn willing to follow his Lemma 1 strategy as long as the bid β( p) is high-
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enough that deviating up to the sure payout of p−β( p) is not profitable for him.
Therefore the incentives of the two key buyers (x = p and x just under p) put exactly
opposing pressures on the level of β( p), resulting in a unique feasible magnitude.
Despite having their bids accepted with certainty, the high-valuation buyers make the
same “gambling payout” (see Eq. 1) from the NYOP channel as the highest low-
valuation buyer whose strictly lower bid is often rejected.

5.3 Optimal bid-acceptance probability for intermediate bid levels

The optimal mechanism determines the acceptance probability of all bids in [0,βp
−] and

[β( p),p]. No bidders should submit bids in the “intermediate” region of [βp
−,β( p)], but

the NYOP retailer still needs to specify a bid-acceptance strategy function for such
bids, ensuring they indeed remain off equilibrium. One simple rule is to simply reject
such bids. Another simple rule that keeps A(b) non-decreasing is to simply let
Pr(accept b)=H(ψ( p)) for all b∈[βp−,β( p)). Our next Lemma derives the upper bound
on the probability acceptance of every intermediate b such that nobody wants to bid in
the [βp

−,β( p)] interval:

Lemma 3 When A bð Þ≤ 1
p−b

� 	
∫
p

ψ−1 0ð Þ
H ψ zð Þð Þdz for b∈[βp−,β( p)), no buyer submits a

bid b∈[βp−,β( p)).

Plugging b=β( p) into the bound in Lemma 3 shows the upper bound approaches 1
as b approaches β( p). Therefore, the full A(b) can actually be continuous and increas-
ing on [0,β( p)]. Lemmas 1–3 complete the proof of the first main result of this paper:

Proposition 2 For every regular continuous F on x; x�½ and every outside posted price
p>ψ−1(0), the following bid-acceptance probability function implements the ex-post

optimal mechanism: A bð Þ ¼
b < lim

x→p−
β xð Þ : H ψ β−1 bð Þ� �� �

lim
x→p−

β xð Þ≤b < β pð Þ : anything≤ ∫
p

ψ−1 0ð Þ

H ψ zð Þð Þ
p−b

dz

b≥β pð Þ : 1

8>>>>><
>>>>>:

where the bidding function β xð Þ ¼
x∈ ψ−1 0ð Þ; p� �

: ∫
ψ xð Þ

0
ψ−1 cð Þ dH cð Þ

H ψ xð Þð Þ

x ¼ p : p− ∫
p

ψ−1 0ð Þ
H ψ zð Þð Þdz

8>>><
>>>:

is the unique best response to A(b). After learning his production cost c, the

retailer accepts a bid b whenever b>β(ψ−1(c)) for b < limx→p− β xð Þ, and he
accepts β( p) with certainty.

Note the NYOP implementation of the optimal mechanism consists of a pair of a
bid-acceptance probability A(b) and a bidding function β(x) that best respond to each
other. The minimum bid implied by β(x) and A(b) is ψ−1(0). It is useful to consider a
closed-form example:
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5.4 Example: F and H Uniform

It is easy to show that an F = Uniform[0,1] implies ψ−1 0ð Þ ¼ 1
2, and hence for

1
2 < x < p,

β xð Þ ¼
Z
1=2

x

2z
h 2z−1ð Þ
H 2x−1ð Þdz ¼

Z2x−1
0

cþ 1

2


 �
h cð Þ

H 2x−1ð Þdc ¼ E
cþ 1

2

����x > cþ 1

2


 �
ð4Þ

The bid of the x = p bidders is

β pð Þ ¼ p 1−Pr p >
cþ 1

2


 �� 
þ Pr p >

cþ 1

2


 �
Ec

cþ 1

2

����p >
cþ 1

2


 �
ð5Þ

WhenH is also uniform on [0,p], β xð Þ ¼ 1þ2x
4 for all x < p, and β pð Þ ¼ 1− 1

4p. Please

see Fig. 2a for this bidding function.
Given this bidding strategy, we can also solve for the bid-acceptance rule in closed

form:

π b; cð Þ ¼ 1⇔

b≤
1þ 2p

4
: accept when c < 2β−1 bð Þ⇔b >

1

2
þ c

4

1þ 2p

4
< b < 1−

1

4p
: accept with Pr≤

2p−1ð Þ2
4p p−bð Þ

b≥1−
1

4p
: accept always

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

Therefore, the retailer only accepts bids over 1/2, accepts bids over 1− 1
4p with

certainty, and is willing to sell below cost whenever 1
2 þ c

4 < c⇔c > 2
3. The implied

bid-acceptance strategy is

A bð Þ ¼

0 for b <
1

2
4b−2
p

for
1

2
≤b≤

1þ 2p

4

below
2p−1ð Þ2
4p p−bð Þ for

1þ 2p

4
< b < 1−

1

4p

1 for b≥1−
1

4p

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

5.5 Two real-world mechanisms for making the first-best strategy credible

The optimal strategy outlined above requires the retailer to communicate a particular
bid-acceptance function and commit to it. One way to facilitate such credible commu-
nication would be for the NYOP retailer to post a table with the probabilities of
different bid-amounts being accepted, and allow buyers to easily report posted
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Fig. 2 a Bidding functions that implement the optimal mechanism, for five levels of the outside market price p
(F=Uniform[0,1],H=Uniform[0,p]). Note to Figure: The subscript of the bidding function indicates p. The empty
circles indicate the jump discontinuities from β−

p to βp(p). For q < p, βq(z)=βp(z) for all z < q. b: Optimal bid-
acceptance strategy, for five different levels of outside price p. Note to Figure: An illustration of Eq. (7). The
numbers next to the lines indicate the five levels of p.Each line reaches 1 at the respective β(p). For bids betweenβp

−

and β(p), the lines indicate the maximum acceptance probability such that no bidder bids at those levels
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probabilities and acceptance outcomes to a third-party auditor. The auditor could then
post the summary statistics, ensuring the empirical probabilities match the promised
ones. For example, the auditor could simply report a single graph, relating the stated
probabilities to recency-weighted empirical estimates of the actual probabilities. As
long as that graph is a 45-degree line, the retailer is not under- or over-stating the
buyers’ chances. Note that the auditor only needs to know the stated probability of
success and the outcome (accept or reject), not the retailer’s eventual cost realization or
anything specific about the product at hand or the bid level. We propose the NYOP
retailers interested in using our optimal selling strategy should facilitate the information
flow to such a third-party auditor and perhaps even support its operations with a flat
subsidy.

Note that an auditor of a multi-product retailer can pool information not only
across independent cost draws for one product, but also across all of his
different products within the same period. Specifically, the auditor needs to
only report a single graph that pools across all recent submitted bids on all
products. The retailer can thus be more convincing about his stated probabilities
of acceptance when he carries more products, so the auditor technique for
commitment exhibits an economy of scope.

Without an official auditor, consumer word of mouth on websites such as
biddingfortravel.com can serve as an unofficial auditor and facilitate credibility via
reputation. This scenario is already happening in the case of Priceline, at least to some
degree: when a buyer selects a hotel region on which to bid, the website flashes a
message saying that some person “recently won a hotel in the selected area” for a
certain price – presumably a price with a high chance of acceptance. When the buyer
then types in a very low bid, Priceline automatically flashes a message saying, “Based
on recent data, your price has almost no chance of being accepted.” Thus, the website
communicates at least the support of prices that have a positive but still uncertain
chance of being accepted. User forums such as betterbidding.com and
biddingfortravel.com contain many reports of how accurate this information is, making
sure Priceline does not exaggerate the range of suggested prices it reports.

6 Simpler second-best selling strategies: four alternatives

The complexity of the first-best NYOP selling strategy characterized in the previ-
ous section may be impractical for some real-world markets. In this section of the
paper, we consider three simpler NYOP selling strategies and one obvious non-
NYOP benchmark: first, retailers may not be able to credibly communicate a full
bid-acceptance strategy, but commit to only considering bids above some minimum
level akin to a public reserve price in an auction. We contrast this strategy with an
important non-NYOP benchmark that is offered by a seller who sets a fixed posted
price despite his ex-ante uncertainty about cost. Second, the retailers may be able
to charge a participation fee, that is, ask to be paid for considering bids, as
proposed by Spann et al. (2010). Third, we analyze a “passive” retailer who can
only credibly reject unprofitable bids (bids below cost). The profits available to
such a retailer are the relevant baseline from which all the above retailers improve.
We thus begin by defining this benchmark next.
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6.1 Passive retailer

A passive retailer cannot commit to anything and cannot charge a participation fee, and
hence accepts all bids above cost: A(b)=H(b). We assume the bidder’s belief about H is
correct; either the retailer communicates his A or the bidders can learn it from
experience or word of mouth. The optimal bidding strategy is

β0 xð Þ ¼ argmax
b≥0

H bð Þ x−bð Þ þ 1−H bð Þ½ �max 0; x−pð Þ ð8Þ

where the second term represents the option value of buying in the outside posted-price
market, and where the zero subscript will henceforth denote the passive-retailer situa-
tion. The expected surplus in Eq. 8 has the same form as that in Eq. (1), so β0(x)=β0(p)
for all x>p. Consider x≤p, and let b* solve the first-order condition (FOC)

b* ¼ x− H b*ð Þ
h b*ð Þ . Under standard regularity assumptions about H, β0(x|x≤p)=b*.7 Given

the bidding function, the expected retailer profit is: Π0(p)=Ex[π0(min(x,p))], where π0

xð Þ ¼ ∫
β0 xð Þ

0
β0 xð Þ−cð ÞdH cð Þ is the expected profit contribution of a buyer with valuation x.

Uniform-uniform example: When F = Uniform[0,1] and H = Uniform[0,p],

β0 xð Þ ¼ x
2, π0 xð Þ ¼ x2

8p, and Π0 pð Þ ¼ p 3−2pð Þ
24 . Note that Π0(p) is hill shaped, and

maximized at p ¼ 3
4. This non-monotonicity demonstrates how a lower outside

market price is both bad news (tougher competition) and good news (lower
expected cost) for the NYOP retailer. The competitive effect is stronger for low
p, the cost-reduction effect for high p.

6.2 Minimum-bid and fixed-price strategies

Suppose the NYOP retailer cannot commit to a probability schedule A(b), but can
credibly refuse to consider bids below a certain minimum level m. Once he considers a
bid, he accepts all bids above his cost just like the passive retailer of the previous
section.

Commitment to a minimum bid is easier than credibly communicating an arbitrary
A(b), because minimum bid is a pure strategy, and hence can be verified on a case-by-
case basis: even a single instance of the retailer accepting a bid below his stated
minimum can be paraded in public as proof that the retailer is not credible. Therefore,
the retailer can commit to a minimum bid by putting his reputation for trustworthiness
on the line. Moreover, a minimum bid can also be made credible via common
knowledge that getting cost quotes from suppliers is costly (a low bid is then not worth
considering, because it does not cover the cost of a supplier quote in expectation).

7 Note the FOC characterization of passive selling requires additional assumptions about H compared to the
first best mechanism. One standard regularity assumption equivalent to the Myerson regularity discussed
earlier in this paper is that c+H(c)/h(c) is monotonically increasing in c.
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Setting a minimum bid is clearly a realistic strategy because it is equivalent to a
public reserve in auctions—a commonly observed feature in most auction markets.
Most existing NYOP retailers already use a minimum bid, but none of them list it
explicitly: for example, Priceline warns a buyer submitting a low bid that “Your price
has almost no chance of being accepted,” and almost never accepts the bid after that
warning. Chiching.com rejects a low bid, and responds, “Be a risk taker! Try some
higher numbers.” Although minimum bids are already in use, we suspect their levels
are generally too low: in private discussions, NYOP managers revealed to us that they
set minimum bids low because they are concerned about turning down potential trades
in the (mistaken) belief that sales volume and market efficiency go hand in hand with
profits. In this section, we hope to provide clear guidance about how to better set the
levels.

Another reason to analyze the minimum-bid strategy is the fact that minimum bids
are a salient feature of the first best policy. It is interesting to investigate how much of
the profit-increasing potential of the first best policy is achieved via rejecting low bids
alone, and how the added profit from the first best policy depends on the outside market
price p. We characterize the optimal minimum-bid strategy by first solving for the
optimal bidding behavior, and then considering the best response of the retailer to the
bidder.

Bidding strategy Assume m≤p to ensure the possibility of trade. Buyers with x < m
do not enter the NYOP market, because they cannot earn a non-negative surplus.
Buyers with x ≥ m solve a constrained version of Eq. 9:

βm xð Þ ¼ argmax
b≥m

H bð Þ x−bð Þ þ 1−H bð Þ½ �max 0; x−pð Þ ð9Þ

It is immediate that as long as H(b)(x−b) is decreasing in b on [m,x],
8 a mass of

buyers with valuations just above m all pool on bidding m : βm(x)=max(β0(x),m). We
now turn to describing how the retailer should optimally set the minimum bid m.

Optimal minimum bid The FOC of the bidding problem against a passive retailer
implies that the mass of bidders bidding exactlym can be expressed in terms of F andH:

β0 xð Þ > m⇔x > mþ H mð Þ
h mð Þ ≡xm, so bidders with x∈[m,xm] bid exactly m. The retail-

er profit thus involves two cases depending on whether m is so high that xm>p (and
hence all bidders bid m) or m is low enough that xm<p (and hence some high-valuation
bidders bid more than m):

Πm m; pð Þ ¼
xm < p : F xmð Þ−F mð Þ½ �

Z
0

m

H cð Þdc þ
Z
xm

p

π0 min x; pð Þð ÞdF xð Þ

xm≥p : 1−F mð Þ½ �
Z
0

m

H cð Þdc

8>>>>>><
>>>>>>:

ð10Þ

8 Concavity of H(b)(x−b)on the same interval is sufficient but not necessary for this.
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The following proposition characterizes the optimal minimumbid the retailer should set:

Proposition 3 Let D mð Þ ¼ F mþ H mð Þ
h mð Þ

� 	
−F mð Þ

h i
H mð Þ− f mð Þ ∫

m

0
H cð Þdc:

When D(m)>0 for all m such that xm<p, the candidate m* for the optimal minimum
bid is implicitly characterized by ψ(m*)=E(c|c<m*), and the candidate m* exceeds the
optimal bid in the first best mechanism. Otherwise, the candidate satisfies D(m*)=0.
Given the candidate m*, the optimal minimum bid is min(m*,p).

The proof of Proposition 3 is straightforward: first of all, the optimal minimum bid
obviously cannot exceed p. D is the first derivative of the first case of Πm shown in
Eq. (10). When D is increasing for all low-enough m, the m* must be in case two
(Eq. 10). The relatively simple expressionψ(m*)=E(c|c<m*) is the first-order condition
of the second case of Eq. (10). From the same simple expression, it is immediate that the
optimal minimum bid exceeds the minimum bid in the first best mechanism of ψ−1(0).

Example of the first case: When F = Uniform[0,1] and H = Uniform[0,p],

D mð Þ ¼ m2

p > 0, so we are in the second case and all bidders with x>m bid exactly

m. The H = Uniform implies E cjc < zð Þ ¼ z
2, so m* ¼ 2

3 >
1
2 ¼ ψ−1 0ð Þ and the

optimal minimum bid is min 2
3 ; p
� �

. The resulting retailer profit is

Πm pð Þ≡maxm Πm m; pð Þ ¼
p >

2

3
:

2

27p

p <
2

3
: 1−pð Þ p

2

8><
>: .

Example of the second case:WhenF is the decreasing-triangle distributionF(x)=x(2−x)
and H is the increasing-triangle distribution H cð Þ ¼ ð c

p Þ2, then xm ¼ 3m
2 and

β0 xð Þ ¼ min 2x
3 ; p
� �

. Therefore, m* ¼ 4
7 when p > 6

7 and m* ¼ 3
5 >

1
3 ¼ ψ−1 0ð Þ

otherwise (detailed derivation of the latter omitted). The optimal minimum bid and
the corresponding behavior are thus as follows:

p≤
3

5
: optimal minimum bid ¼ p; everyone with x≥p bids p

3

5
< p <

6

7
: optimal minimum bid ¼ 3

5
; everyone with x >

3

5
bids

3

5

p >
6

7
: optimal minimum bid ¼ 4

7
; people with x∈

4

7
;
6

7

� 
bid

4

7
; x >

6

7
bid β0 xð Þ

8>>>>><
>>>>>:
The ψ(m*)=E(c|c<m*) condition in Proposition 3 is intuitively related to monopoly

posted pricing, in which the optimal price to post when facing a production cost of k
satisfies ψ−1(k). The following corollary clarifies the relationship:

Corollary to proposition 3 When the optimal minimum bid is high enough that all
bidders bid it, the optimal minimum bid is set at the level of the monopoly posted price
that would be optimal for a posted-price retailer facing a procurement cost that
depends on price charged, such that the procurement cost is the draw from distribution
H truncated above at the posted price.

In other words, when all bidders bid the minimum bid amount, the optimal mini-
mum bid feels like a posted price. But the minimum-bid strategy is clearly not
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equivalent to charging a posted price, because the minimum-bid retailer is not obliged
to sell to every buyer willing to pay m. Instead, the sale is made only when m happens
to exceed the actual procurement cost c. The corollary casts the minimum-bid problem
into a posted-price problem, in which the procurement cost is endogenous to price in a
very particular manner.

To illustrate the difference between the minimum bid and the posted price, note that a
retailer forced to charge a fixed posted price irrespective of cost would maximize the
expected profit [1−F(r)][r−E(c)] subject to r≤p, and so charge r*=min[ψ−1(E(c)),p]. A
comparison with the ψ(m*)=E(c|c<m*) condition of Proposition 3 shows the optimal
fixed posted price r* exceeds the optimal minimum bid m* as long as they are both
below p. Intuitively, the fixed posted price needs to be higher than the minimum bid to
compensate for higher average costs that the fixed-price seller incurs. The lack of
flexibility also makes it obvious that the fixed-price strategy is less profitable then.
When r* = m* = p, the two strategies and their profits obviously coincide, because all
bids are accepted by construction (we assumed c≤p in defining H).

Uniform-uniform example: When F is uniform on [0,1] and H is uniform on [0,p],
the optimal posted price would thus be min 1

2 þ p
4 ; p

� �
. The r*>m* inequality noted

above manifests itself in the example because 1
2 þ p

4 < p⇔p > 2
3.

6.3 Participation fee: a two-part-tariff strategy

Spann et al. (2010, 2015) assume F = Uniform[0,1] and H = Uniform[0,p], and show
the retailer profits more from charging a participation fee than from charging a
minimum markup. They also show the participation fee alone is more profitable than
any combination of a participation fee and a minimum markup. We now repeat their
main result in our notation, focusing on p > ψ−1 0ð Þ ¼ 1

2 . The optimal fee e* isffiffiffiffiffiffiffiffiffiffiffi
e* pð Þp ¼ 2

7
ffiffi
p

p , and the resulting retailer profit is Πe pð Þ ¼ 4
147p þΠ0 pð Þ (Proposition

2 of Spann et al. 2015). The participation fee screens low-valuation buyers out of the
market, and the implied entry threshold is xe ¼ 4

7. In other words, buyers with x≥ 4
7 pay

the fee and participate. The retailer then accepts all bids above cost, so his NYOP
selling strategy is A(b)=Pr(b>c), and the uniform assumption on H implies buyers who
enter bid β0 xð Þ ¼ x

2.
Given a general F and H, the retailer’s profit is most conveniently expressed in terms

of the entry threshold, keeping in mind that the fee paid by all participants equals the
expected surplus of the marginal entrant:

Πe xe; pð Þ ¼ 1−F xeð Þ½ �H β0 xeð Þð Þ xe−β0 xeð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e¼S xeð Þ≡ expected surplus of xe

þ
Z
xe

1

π0 min x; pð Þð ÞdF xð Þ ð11Þ

Our next proposition chararacterizes the optimal entry threshold:

Proposition 4 The candidate optimal entry threshold in a participation-fee strategy
satisfies ψ(xe)=E(c|c<β0(xe)), and the optimal entry threshold is min(xe,p).
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Note that although elegant, the condition in Proposition 4 involves the bidding
strategy, and so it does not characterize xe purely in terms of the model parameters F
and H (in contrast to previous propositions in this paper). Comparing Propositions 3
and 4, we can conclude the following immediate corollary from β0(x)≤x:

Corollary to proposition 4 When the optimal minimum bid is high enough that all
bidders bid it, it exceeds the optimal entry threshold of the participation-fee strategy.

We now turn to profit comparisons among all the selling strategies considered in this
paper.

6.4 Comparing the four alternative strategies: analytical results

Closed-form analytical profit comparisons are available for the F =Uniform[0,1] andH =
Uniform[0,p] assumption used throughout the preceding examples. Before looking at
profits, considering the allocation rules implied by the alternative strategies is useful
because the revenue-equivalence theorem links allocation rules tightly to profits. To
summarize the theoretical results so far, when cost is c, a customer x is allocated thewhen:

Optimal mechanism: ψ(x)≥c or x≥p
Minimum bid: ψ(x)≥E(c|c<x) and m≥c
Fixed price: ψ(x)≥E(c)
Participation fee: ψ(x)≥E(c|c<β0(x)) and β0(x)≥c

where we assume for simplicity that the first case of Proposition 3 applies, namely, that all
bidders submit the minimum bid and that p is high enough that it does not “take over” as
the minimum bid, fixed price, or the entry threshold. Figure 3 illustrates these allocation
rules given the uniform-uniform assumption with the outside price fixed at p=4/5.

Figure 3 shows that the participation fee and the passive selling strategies can
never (under any p) lead to the same allocation as the optimal policy of Proposition 1
because they never allocate the good to the buyer when x < 2c, but the optimal policy
allocates it to all x>p irrespective of c. In addition, Fig. 3 illustrates that when p=4/5,
all the allocation rules are different from each other. The fact that all buyer types pay
the same amount under the optimal minimum-bid and fixed-price strategies makes
the allocation rules of those strategies look like rectangles. Because the rule of the
optimal policy is not a rectangle, it must be strictly more profitable than the
minimum-bid and fixed-price strategies. However, recall from section 6.2 that ψ−

1(0)≤m*≤r*≤p. This inequality implies that as p drops down toward 1
2 , the allocation

rules of these two simple strategies approach the optimal allocation rule. Therefore, and
unlike the passive and participation-fee strategies, the minimum-bid and fixed-price
strategies can be as profitable as the optimal strategy when p is low. The reason is
obvious: the first best strategy reduces to a fixed-price strategy when p=ψ−1(0).

Figure 4 plots profits of all four alternative selling strategies and the first best
strategy as a function of the price of the outside option (under the F = Uniform[0,1]
and H = Uniform[0,p] assumption used throughout this section), and illustrates our last
proposition:
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Proposition 5 When F is uniform on [0,1] and H is uniform on [0,p], as p approaches
ψ−1 0ð Þ ¼ 1

2 from above, the relative profit advantage of the first-best strategy over the
minimum-bid strategy and the fixed-price strategy vanishes. The relative ranking of the
simple strategies is as follows:

a) the minimum-bid strategy strictly dominates the participation-fee strategy for all p,
and the profit advantage is decreasing in p.

b) the minimum-bid strategy is equivalent to the fixed-price strategy for p≤ 2
3 and

strictly dominates the fixed-price strategy otherwise.
c) a p* exists such that the fixed-price strategy strictly dominates the participation-fee

strategy for p<p*, and vice versa.
d) the passive strategy is strictly dominated by all other strategies.
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Fig. 3 Allocation rules: the optimal mechanism vs. simpler strategies. Note to Figure: The posted price p is
set to 4/5 throughout the figure. The support of (x,c) is in the px1 rectangle, and F(x) is uniform. The shaded
area indicates the allocation rule of the optimal mechanism. The area filled by vertical lines indicates the
allocation rule of the participation-fee strategy with the fee set optimally at 5/49 and the resulting entry-
valuation threshold of 4/7. The area filled by horizontal lines indicates the allocation rule of the minimum-bid
strategy with the minimum bid set optimally at 2/3. The area outlined with a thick dotted line indicates the
allocation rule of the fixed-price strategy with the price level set optimally at 7/10. The passive-strategy
allocation rule corresponds to the triangle above the x = 2c line
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To gain intuition for the minimum bid approaching full optimality as p approaches
half, note that for p=1

2, both the first best contingent bid-acceptance rule and the optimal
minimum-bid strategy reduce to posted pricing. Both the first best NYOP retailer and his
minimum-bid counterpart abandon low-valuation buyers completely, focusing on steal-
ing the high-valuation buyers from the outside market and charging them p.

The full optimality of the minimum-bid strategy at p ¼ 1
2 also immediately implies

its dominance over participation fees for low p. The difference between these two
simple NYOP strategies declines as p rises, because the retailer who uses a participation
fee is better able to extract profit as p increases. Both retailers face rising costs as p
increases, but the minimum-bid retailer does not benefit from a compensating increase
in bids beyond p=2/3. To see why, note that for p>2/3, the outside price does not affect
entry and bidding when a retailer commits to a minimum bid. Therefore, the profit
Πm(p) is decreasing in p purely because of rising retailer costs. The participation-fee
retailer faces the same rising costs, but p also increases his buyers’ bids because the

bidding strategy is β0 xð Þ ¼ min x;pð Þ
2 . In other words, the bidding subsequent to paying a

participation fee is better at price discriminating than bidding at a minimum-bid retailer.
Therefore, Πe(p) decreases more slowly than Πm(p). Proposition 5 shows they never
cross over: even at p=1, the minimum-bid strategy is more profitable.

The intuition behind claim b) is clear from the fact that the minimum-bid and fixed-
price strategies coincide exactly for low p, because the retailer sets the minimum bid at
p, effectively guaranteeing a sale to all buyers with v>p because it is common
knowledge that c < p. In other words, the minimum-bid strategy for p≤ 2

3 is effectively
a fixed-price strategy. For higher p, the fixed-price seller charges a higher price than the
minimum bid to hedge against higher average costs as shown in section 6.2. The
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Fig. 4 Expected profit of NYOP retailers: four alternative strategies. Note to Figure: Illustration of Propo-
sition 5. F is uniform on [0,1] and H is uniform on [0,p]

156 R. Zeithammer



minimum-bid seller reaps part of the resulting efficiency benefit, because he can still
turn bids down when cost happens to be too high.

Claim c) regarding the relationship between the fixed-price strategy and the
participation-fee strategy is good news for participation fees: if they were dominated
by the much simpler fixed price, recommending them to NYOP sellers would be
dubious advice. Instead, the claim shows participation fees can be relatively profitable,
but only when the retailer is a near-monopolist and cannot commit to a minimum-bid
strategy.

6.5 Profit comparison of the four alternative strategies: simulation results

This section explores how the results of Proposition 5 generalize to other distributional
assumptions beyond uniform F and H, with a special focus on the minimum-bid
strategy that won the horserace among simpler strategies in Proposition 5. To explore
a wide variety of distributional shapes while maintaining as much tractability as
possible, we fix p=4/5 throughout and we consider the Kumaraswamy distribution
for both F and H, parametrized as

F xð Þ ¼ 1− 1−xαð Þγ on 0; 1½ �and H cð Þ ¼ 1− 1−
c

p


 �ρ
 �τ

on the 0; p½ � ð12Þ

The Kumaraswamy distribution is closely related to the Beta family, can capture the
same variety of density shapes (flat, increasing, decreasing, concave, convex, U,
inverted-U), and, unlike the Beta, has a closed-form cdf, simplifying many of the
computations. In the simulation study, we varied all four parameters {α,γ,ρ,τ} inde-
pendently of each over the range {0.75,1,2,4} in a full factorial design. Therefore, we
considered 44=256 pairs of (F,H) distributions. Please see Fig. 5 for an illustration of
distribution shapes of F that result from varying both α and γ (the corresponding H
shapes are analogous, with the support reduced to [0,p]). The relatively high value of
p=4/5 was chosen because several of the NYOP selling strategies (including the first
best one) boil down to uninteresting posted-price selling when p is low relative to the
distribution of valuations. To assess when p=4/5 is “low,” Fig. 5 shows the proportion
of buyer valuations above p=4/5 for every α and γ.

The main goal of the simulation study is to explore the boundary conditions of the
main takeaways from Fig. 4 and Proposition 5 that the minimum-bid strategy

1) achieves much of the first best strategy’s profit lift relative to passive selling and
2) dominates all other simple strategies under consideration.

We answer these questions in turn by comparing the profitability of the minimum-
bid strategy first to that of the optimal strategy, and second to that of the participation-
fee strategy. In each study, we analyze the following ratio, and we call it relative profit
lift:

Relative Profit Lift minimum bid; alternative; pð Þ ¼ Πm pð Þ−Π0 pð Þ
Πalternative pð Þ−Π0 pð Þ ð13Þ
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Minimum bids vs. optimal NYOP selling: Figure 6 shows the relative profit lift of the
minimum-bid strategy versus the optimal mechanism for all combinations of F and H
under consideration. The optimal mechanism weakly dominates the minimum-bid
strategy, so the relative profit lift is between 0 and 1 and can be interpreted as a
percentage of the maximum theoretical profit improvement that the minimum-bid
strategy achieves. Each subplot in Fig. 6 fixes a particular distribution of valuations
(indicated by parameters α,γ in the plot title) and considers all distributions of cost (all
combinations of cost-distribution parameters ρ,τ). The contours are isoquants of rela-
tive profit lift spaced 0.1 apart, i.e. deciles of the percentage of maximum lift achieved.
To help interpret the results, Fig. 6 also delineates regions of the parameter space when
the optimal minimum bid is equal to the outside price p and regions when the optimal
minimum bid is so low that some bidders bid more than the minimum bid (this situation
is called the “second case” in Proposition 3).

The number inside each plot shows the magnitude and approximate location of the
lowest relative lift in the plot. For example, the lowest relative profit lift under uniformly
distributed valuations (α=1,γ=1) is 0.76 when ρ=2 and τ=0.75. Given that low point,
the two contour lines shown in the (α=1,γ=1) plot correspond to the 0.8 and 0.9 levels
of the relative profit lift. We can thus conclude at a glance that when valuations are
distributed uniformly, the minimum-bid strategy achieves at least 76 % of the profit lift
achieved by the optimal strategy, and the relative profit lift rises as ρ falls and τ rises, that
is (see Fig. 5), as costs become concentrated at the low end and the mass just below p
approaches zero. Having explained the plots, we now turn to the substantive results.

The previous section found that, at least in the uniform-uniform case, much of the
profit-increasing potential of the first best policy is achievable via just rejecting low
bids in a simpler minimum-bid strategy. The relative profit lift of the minimum-bid
strategy in the uniform-uniform case can be expressed analytically as 496/603≈0.82
(the location of this value in the {α,γ,ρ,τ} space is shown by the star symbol in the
(α=1,γ=1) plot of Fig. 6). The first result of our simulation study is that the finding
generalizes to situations when γ≤1, that is, when the valuation distribution has
sufficient mass at the top. Because we are considering p=4/5 throughout, the exact
shape of F above 4/5 does not matter, and the percentage of “high-valuation” bidders
who can afford the outside option is a relevant metric for the amount of mass at the top
of the distribution. We find the percentage of bidders who can afford the outside option
has a high correlation of 0.83 with the average (over different cost parameters) relative
lift of the minimum-bid strategy. Intuitively, the minimum-bid strategy always increases
bids of people with valuations above the optimal minimum bid, but this increase only
boosts retailer profits when enough bidders are above the minimum. Because the
minimum bid is weakly below p, the percentage of high-valuation bidders is a proxy
for the amount of bidders above the optimal minimum (which depends on both
distributions in complicated ways).

Although the percentage of high-valuation bidders goes a long way toward
explaining the effectiveness of the minimum-bid strategy, the shape of the valuation
distribution below p also matters. Consider the (α=2,γ=2) and (α=0.75,γ=1) situa-
tions: they have almost the same number of high-valuation bidders, but the relative
effectiveness of minimum bids is both lower on average (75 % vs. 85 % relative lift)
and also less robust to different cost distributions (much lower when costs are concen-
trated at the top) when (α=2,γ=2). Consider the (ρ=4, τ=0.75) cost distribution for
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which the relative lift increases from 50 % for (α=2,γ=2) to 88 % for (α=0.75,γ=1):
the optimal minimum bid equals p for (α=0.75,γ=1), so trade is guaranteed by virtue
of c≤p. On the other hand, the optimal minimum bid is 0.76 for the (α=2,γ=2) case,
which leaves 19 % of the costs too high, preventing trade. The downward-sloping
density of valuations just below p is clearly putting a downward pressure on the optimal
minimum bid, and in turn reducing efficiency of the market. In other words, the
minimum-bid strategy does not perform well (relative to the optimal strategy) when
lowering the minimum results in a lot more additional bidders, that is, when the
demand is steep near the level of the optimal minimum bid, which in turn depends
on both the demand and the cost distributions.

The intuition that locally steep demand hurts the minimum-bid strategy explains
much of the pattern of results in Fig. 6 beyond just the pair of valuation distributions
studied in the previous paragraph. Consider the steep hill-shaped F(α=4,γ=4) case:
when costs are concentrated at the top and the optimal minimum bid is thus on the
“downhill” side of f, the minimum-bid strategy achieves only 42 % relative lift.
However, when the costs are concentrated at the bottom and the optimal minimum
bid is thus on the “uphill” side of f, the minimum-bid strategy achieves 98 % of the
relative lift. We summarize the above findings in the following result:

Simulation result 1 Regardless of the cost distribution, the minimum-bid strategy
captures much of the maximum theoretical profit available from the first best NYOP
selling strategy when a lot of buyers can afford the outside option. Across all cost
distributions considered, the minimum-bid strategy increases profits at least 73 % as
much as the first best strategy when γ≤1. In addition, the minimum-bid strategy
captures more of the maximum theoretical profit when the density of valuations around
the minimum bid level is not downward sloping.

Minimum bids vs. participation fees To study question 2), we first note that the
minimum-bid strategy will always at least weakly dominate the fixed-price and passive
strategies, so question 2) boils down to a comparison between the minimum-bid and the
participation-fee strategies. Figure 7 shows the profit lift of the minimum-bid strategy
relative to the participation-fee alternative (see Equation 13 for the definition of relative
lift). The equal-lift line is highlighted in thickness, and the lighted shading highlights
situations in which the minimum-bid strategy is more profitable. All other nomencla-
ture is analogous with that in Fig. 6.

It is immediate from Fig. 7 that the finding from the uniform-uniform case does not
generalize to valuation distributions concentrated at the bottom of the support. Instead,
we find regions of the parameter space in which participation fees dominate minimum
bids. Not surprisingly, those regions correspond to the regions analyzed above in which
the minimum-bid strategy is weak relative to the optimal mechanism. Another obser-
vation we make based on Fig. 7 is that participation fees dominate minimum bids only
when α < ρ and γ < τ. In words, participation fees outperform minimum bids only
when valuations are concentrated at the bottom of the support and tend to be substan-
tially lower than costs. We summarize these findings as:

Simulation result 2 The minimum-bid strategy is more profitable than the participation-
fee strategy whenever valuations tend to be higher than the costs, that is, when the gains
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from trade are large. Across all cost distributions considered, the minimum-bid strategy
increases profits at least 15%more than the participation-fee strategywhenα≤2 andγ≤1.
Conversely, the participation-fee strategy dominates when valuations are concentrated at
the bottom of the support (γ>2) and the gains from trade are small.

To gain intuition for why participation fees can dominate the minimum bids, recall
that the participation-fee strategy is good at realizing gains from trade because it captures
the marginal entrant’s surplus (see proof of Proposition 4 for the role of gains from trade
in the retailer’s optimization). One way to see how the participation-fee strategy is better
at realizing gains from trade, note that although both strategies exclude buyers with very
low valuations from the market, the minimum-bid strategy usually excludes more
buyers (always true when all bidders bid the minimum bid; see Corollary to Proposition
4). When not many high-valuation buyers are present (and the minimum-bid strategy is
thus weak) and the gains from trade are low (most valuations are below costs), the
participation-fee strategy can thus be more profitable overall. For example, when
valuations are concentrated at the bottom of the support (γ=4), the correlation between
the minimum bid’s relative lift and gains from trade is 0.71.

For a concrete example of participation fees outperforming minimum bids, consider
the {α=1,γ=2,ρ=2,τ=1} situation in the second closed-form example of the
minimum-bid strategy. Proposition 4 and the fact that β0 xð Þ ¼ min 2x

3 ; p
� �

imply the

entry threshold is xe ¼ 9
19≈0:47 < m* ¼ 3

5. The optimal participation fee is the expect-
ed surplus of the marginal entrant, which is only about 0.024 here. Given p=4/5, all
bidders facing the participation fee bid less than their counterparts facing the minimum-
bid strategy, so the minimum-bid strategy raises more bidding revenue. However, the
seemingly small fee paid by the roughly 27 % of buyers with x>xe is enough to tip the
profit balance in favor of the two-part-tariff strategy.

7 Discussion

Name-your-own-price (NYOP) selling accommodates buyer activism whereby buyers
submit bids for products the retailer may or may not be able to subsequently procure at
a low-enough cost. We define a selling strategy of an NYOP retailer and optimize it. A
selling strategy is a schedule of bid-acceptance probabilities that depend only on the bid
level and on the commonly known outside spot-market price. The retailer needs to set a
single such strategy for a range of possible costs upfront, but he learns the current cost
realization before making each bid-acceptance decision. We use mechanism-design
techniques to craft the optimal bid-acceptance probability schedule. Our solution is a
pair of the optimal bid-acceptance probability function and the buyer bidding function
that best responds to it, and the only assumption we need is that the distribution of
buyer valuations be regular in the sense of Myerson (1981).

Neither the optimal selling strategy nor the bidding strategy that best responds to it
are trivial: the bid-acceptance probability is increasing for small bids, equal to unity for
very high bids, and only partially determined for intermediate bids: optimality dictates
only an upper bound of the policy. The reason is that the optimal allocation calls for
“high” bidders who could potentially afford the outside option to receive the object
with certainty, but bidders who barely cannot afford it receive the object with a
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probability strictly less than unity (otherwise, the high bidders would mimic lower-
valuation bidders). The equilibrium bidding function thus needs to involve a jump
discontinuity whereby the bidders who could potentially afford the outside option all
pool at a particular bid level (which we prove is unique). Pooling occurs among high-
valuation bidders because the outside posted-price market is a real option for them, and
so they all mimic the buyer with valuation equal to the outside price.

We find the optimal selling strategy allows the NYOP retailer to make as much
profit as he would if he could learn his cost first and use the optimal mechanism
contingent on it (it is well known that the contingent optimal mechanism is to make a
take-it-or-leave-it offer at a fixed price). In other words, we show the optimal strategy
can achieve first-best ex-post profits despite the retailer not knowing his cost realization
at the time of announcing his strategy. The intuition for this result is that at the time of
making the bid-acceptance decision, the retailer knows both his cost and the buyer’s
valuation, and so he can base his decision on both pieces of information available to the
first-best seller. The retailer learns the buyer’s valuation by inverting the bidding
function at the observed bid. Seemingly, the retailer could use any increasing bid-
acceptance probability to achieve his goal of inverting the bidding function, but only
the bid-acceptance probability implied by the ex-post optimal allocation is sustainable
in equilibrium (buyers are not deceived).

In the proposed static model, NYOP is the only chance to buy the good for the buyer
who cannot afford the outside market price. One may conclude the bids of those buyers
are thus artificially inflated via a restriction on supply. This assumption is not critical to
the revenue-equivalence results: in a more complicated dynamic model, the buyer can
also wait to see whether posted prices drop, or even try NYOP bidding again at a later
stage. Either of these real options to obtain a substitute product in the future would
reduce buyer bids. However, the same options would also reduce the buyer’s willing-
ness to pay a posted price today as in the durable goods monopoly literature. Therefore,
the revenue equivalence between dynamic NYOP and the corresponding dynamic
posted pricing would likely continue to hold.

The NYOP retailer needs to credibly communicate the strategy to prospective
buyers. Credibility requires commitment to a particular acceptance probability for every
possible bid level, but is does not require the retailer to credibly communicate his cost
realization or commit to any action contingent on a cost realization. The competition
with the outside posted-price market requires the optimal retailer to sometimes subsi-
dize some unprofitable high bids (e.g., bids by high-value bidders who all bid as if their
valuation were equal to the outside posted price). This type of commitment is a new
requirement brought about by the NYOP format in that it is not required for standard
monopoly posted pricing.

The complexity of the first best strategy may be too impractical for some real-world
markets. We consider three types of simpler second-best NYOP strategies: first,
retailers may be able to commit to considering bids only above some minimum level,
but not to a probability of bid acceptance above that level. Second, the retailers may be
able to charge a participation fee, that is, ask to be paid for considering bids, as
proposed by Spann et al. (2010, 2015). Finally, we also consider the non-NYOP
strategy of just posting a fixed selling price before knowing the cost realization. We
compare the profitability all these strategies to both the profitability of the first-best
strategy and the profitability of the passive strategy of accepting all bids above cost. We
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perform this comparison numerically for a wide range of possible cost and valuation
distributions given a particular level of the outside price, and we perform it analytically
for all levels of the outside price when both distributions are uniform.

Not surprisingly, we document that all “active” strategies strictly outperform the
passive strategy of accepting all bids above cost, and the minimum-bid strategy weakly
dominates the fixed posted-price benchmark. More surprisingly, we find the minimum-
bid strategy achieves much of the maximum theoretical profit (i.e., the profit of first
best strategy) in most of our simulation scenarios. Specifically, the minimum-bid
strategy does particularly well when the distribution of valuations involves a lot of
consumers who can afford the outside option, and when the density of valuations
around the optimal minimum bid level is not downward sloping. The intuition for these
drivers of minimum-bid’s profitability is that the minimum bid strategy is good at
increasing high-valuation buyers’ bids. When enough such buyers are present (proba-
bility of affording the outside option is a proxy for this scenario) and when the optimal
minimum bid is relatively high (as is the case when the density of valuations is non-
decreasing), the increase in high-value buyers’ bids results in a lot of additional profit
relative to the passive strategy.

In terms of bidding behavior, the minimum-bid strategy results in many, if not all,
buyers pooling at the minimum bid level. This behavior is different from the effect of a
reserve price in an auction, where only the buyer with valuation equal to the minimum
bid bids exactly the minimum bid. The reason for the difference is that an NYOP bidder
who can afford the minimum bid does not have to compete with other bidders who can
also afford it, and so he faces a positive probability of winning the item.

Regarding the comparison of the proposed simpler strategies to each other, we
find that both the minimum-bid strategy and the participation-fee strategy can
dominate. The participation-fee strategy is good at realizing gains from trade; that
is, it is more efficient than the minimum-bid strategy. The intuition is the same as
for the standard two-part tariff in the posted-price setting: a seller using a two-part
tariff wants to make trades happen because he captures the full gain from trade of
the marginal entrant. When the potential gains from trade are small, that is, when
most costs exceed most valuations, the minimum-bid strategy is not very profitable
(see previous paragraph), and the participation-fee strategy thus dominates it be-
cause it is good at capturing those gains. In summary, we conclude that much of the
“heavy lifting” of the first-best strategy is often accomplished by the much simpler
minimum-bid strategy, but NYOP retailers in thin markets can do better by charging
participation fees.

Regarding practical implementation, the mechanism proposed here is more in line
with “select your price” than with true “name your own price” in Chernev (2003).
Moreover, we suggest the retailer should present not only a menu of prices, but also the
acceptance probabilities. Doing so facilitates commitment (either via a third-party
auditor or via reputation, as we describe in detail) and simplifies bidding.

Outside the scope of this paper, credibly communicating the acceptance probabilities
also enables the retailer to better learn consumer preferences by controlling consumer
beliefs about chances of bid acceptance. Specifically, the retailer should be able to
easily use the bid-inversion approach designed for analysis of first-price sealed-bid
auctions (e.g. Guerre et al. 2000). Instead of using the empirical probability of winning
at any given bid level (which needs to be estimated in the case of auctions), the retailer
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can simply plug in his selling strategy. We propose that this feature of optimal NYOP
could generate a very clean source of demand information as a by-product of selling. At
the minimum, this information would be useful to the retailer by allowing him to fine-
tune his strategy over time.

Also beyond the scope of this paper, the modeling approach proposed here could be
use to derive optimal procurement strategies under ex-ante valuation uncertainty in the
“reverse” RFQ scenario, in which bids are offers to sell at a given price, and the
procurement strategy needs to be set before the buyer learns about his valuation of the
good or service being bought.

Appendix: notation table and proofs of propositions

Proof of proposition 1 Let m(x) be the expected payment by a buyer with valuation x.
From risk neutrality, the utility of a buyer x who reports type z is U(x)=xq(z)−m(z), and
standard incentive-compatibility arguments (see Myerson 1981 for details) imply the
expected payment is the following function of q(x):

m xð Þ ¼ m 0ð Þ þ xq xð Þ−
Z
0

x

q tð Þdt ðICÞ

Table 1 Notation

x : buyer’s valuation of the object

b : buyer’s bid

f(x),F(x) : density and the cumulative distribution function of the distribution of x

ψ xð Þ≡x− 1−F xð Þ
f xð Þ : virtual value of type x

c : retailer’s procurement of the object

h(c),H(c): density and the cumulative distribution function the distribution of c

p : lowest price posted in an outside spot market for the object

β(x): buyer’s bidding function

A(b) : the NYOP selling strategy, i.e., probability that retailer accepts bid b

U(b,x): expected surplus of a buyer x who bids b

q(x) : ex-ante probability that retailer allocates the object to a buyer with valuation x.

Subscripts on q indicate various second-best strategies in section 6.

π(x,c) : probability that retailer with cost c allocates the object to a buyer with valuation x

e : participation fee

m : minimum bid

r : posted price fixed upfront, i.e., before knowing cost c

Πs pð Þ ¼ maxs Πs s; pð Þ, where Πs(s,p) is the expected profit of a retailer who uses a selling
strategy s∈{0,A,m,e,r}
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When (IC) does not hold, the buyers do not have the incentive to report their x
truthfully.

Consider the direct-revelation retailer who can set an arbitrary bid-acceptance rule π(x,c).

Plugging the implied bid-acceptance rule q xð Þ ¼ ∫
p

0
π x; cð ÞdH cð Þinto (IC) implies that on

average over all c, such a retailer receives a payment of

m xð Þ ¼ m 0ð Þ þ x

Z
0

p

π x; cð ÞdH cð Þ−
Z
x�

xZ
0

p

π t; cð ÞdH cð Þdt ðA1Þ

Note the rule π can use c as an input, so the retailer can set the rule for all possible c
levels upfront. However, the buyers do not know c at the time of submitting their bids,
so incentive compatibility only restricts the average payment of a given buyer type.
Because all buyers with x≥p pay m(p), the expected profit of the retailer is

Π πð Þ ¼ Pr x < pð Þ E
x

���x<p
m xð Þ½ �−E

c;x

���x≤p cπ x; cð Þ½ �
0
@

1
A

þ 1−Pr x < pð Þ½ � m pð Þ−Ec cπ p; cð Þ½ �½ �
ðA2Þ

Plugging the m function from (A1) into the profit expression (A2) yields

Π πð Þ ¼ m 0ð Þ þ ∫
p

x
x∫
p

0
π x; cð ÞdH cð ÞdF xð Þ−∫

p

x
∫
x

0
∫
p

0
π t; cð ÞdH cð ÞdtdF xð Þ−∫

p

x
∫
p

0
cπ x; cð ÞdH cð ÞdF xð Þ

þ 1−F pð Þ½ � p∫
p

0
π p; cð ÞdH cð Þ−∫

p

0
∫
p

0
π t; cð ÞdH cð Þdt−∫

p

0
cπ p; cð ÞdH cð Þ

� 

ðA3Þ
where the second row corresponds to the profit from high buyers (x≥p), and the last
term in each row is the expected cost of goods sold.

As in other mechanism-design settings, the term ∫
p

x
∫
x

0
∫
p

0
π t; cð ÞdH cð ÞdtdF xð Þ in the first

row can be simplified by first changing the order of integration from c,t,x to x,t,c, and
noting that π(t,c) does not depend on x:

Z
x�

pZ
0

x

π t; cð ÞdtdF xð Þ ¼
Z
0

p

π t; cð Þ
Z
t

p

dF xð Þ
 !

dt ¼¼
Z
0

p

π t; cð Þ F pð Þ−F tð Þ½ �dt

¼
Z
x�

p

π x; cð Þ F pð Þ−F xð Þ
f xð Þ


 �
dF xð Þ ðA4Þ
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where the last equality simply renames the t variable as x and changes variables. Finally,
change the order of integration to be first over x and then over c throughout, and collect terms:

Π πð Þ ¼ m 0ð Þ þ
Z
0

pZ
x�

p

x−
F pð Þ−F xð Þ

f xð Þ −c

 �

π x; cð ÞdF xð ÞdH cð Þ þ

þ 1−F pð Þ½ �
Z
0

p

p−cð Þπ p; cð ÞdH cð Þ
2
4

3
5− 1−F pð Þ½ �

Z
0

pZ
x�

p

π x; cð ÞdxdH cð Þ

ðA5Þ

The last term in (A5) is the expected surplus of the high buyers (x≥p). It obviously depends

on the allocation rule for all x≤p, and after rewriting it as ∫
p

0
∫
p

x
π x; cð Þ 1−F pð Þ

f xð Þ
� 	

dF xð ÞdH cð Þ, we
can incorporate it into the first row of (A5) to result in (Standard individual rationality
arguments also imply m(0)=0):

Π πð Þ ¼ Ec

Z
x�

p

x−
1−F xð Þ
f xð Þ −c


 �
π x; cð ÞdF xð Þ þ 1−F pð Þ½ � p−cð Þπ p; cð Þ

2
4

3
5 ðA6Þ

Equation (A6) implies the retailer profit is as if all high customers paid p and all low
customers delivered the same profit they would in the absence of the posted-price
competitor. In other words, the surplus of high-value buyers implied by the IC
constraint affects the payments of low-value buyers exactly as it would in the absence
of the posted-price competitor.

The optimal allocation rule is obvious, and it maximizes the expected profit
pointwise:

π x; cð Þ ¼ 1⇔ x < p and c < x−
1−F xð Þ
f xð Þ


 �
or x ¼ p ðA7Þ

To see the optimality of always selling to high-value buyers with x=p, note that
although the term π(p,c)appears in (A6) twice, its impact on profits inside the integral is
measure zero, whereas its impact on profits in the [1−F(p)](p−c)π(p,c) term has
positive measure.

To derive the c-contingent profit shown in the proposition, use integration by parts to

show that 1−F pð Þ½ � p−cð Þ ¼ ∫
x

p
ψ xð Þ−cð ÞdF xð Þ, and verify that the right-hand expression

results whenwe plug A7 into the expression in the large square brackets in A6.QEDProp 1

Proof of Lemma1 Because q(x)=U′(x),β
0
xð Þ ¼ U xð ÞU ″ xð Þ

U
0
xð Þð Þ2 > 0⇔U ″ xð Þ > 0⇔q

0
xð Þ > 0.

From Proposition 1, q′(x) = ψ′ (x)h (ψ(x)) > 0⇔ψ ′(x) > 0. To derive the optimal bidding

function, plug q and U from Proposition 1q xð Þ ¼ ∫
p

0
π x; cð ÞdH cð Þ ¼ H ψ xð Þð Þ and U xð Þ
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¼ ∫
x

x
q tð Þdt ¼ ∫

x

ψ−1 0ð Þ
H ψ tð Þð Þdt into Eq. 2 :β xð Þ ¼ ∫

x

ψ−1 0ð Þ
t dH ψ tð Þð Þ
H ψ xð Þð Þ ¼ ∫

ψ xð Þ

0
ψ−1 cð Þ dH cð Þ

H ψ xð Þð Þ

¼ E ψ−1 costð Þ��ψ−1 costð Þ < x
� �

, where the second equality follows from a change in
variables c=ψ(z). QED Lemma 1

Proof of Lemma 2 To be incentive compatible, β(p)must satisfy, for every x<p:

p−β pð Þ≥A β xð Þð Þ p−β xð Þð Þ IC1ð Þ
U xð Þ≥x−β pð Þ IC2ð Þ

where the first inequality(IC1) ensures type p bids β(p) and the second inequality
(IC2)ensures types x<p do not deviate to β(p). The deviation surplus for type p is

A β xð Þð Þ p−β xð Þð Þ ¼ H ψ xð Þð Þ p−
Zψ xð Þ

0

ψ−1 wð Þ h wð Þ
H ψ xð Þð Þdw

0
@

1
A ¼

Zψ xð Þ

0

p−ψ−1 wð Þ� �
dH wð Þ

which is obviously increasing in x, so the best deviation from bidding p is to bid βp
−.

Therefore, (IC1) reduces to β pð Þ≤p− ∫
ψ pð Þ

0
p−ψ−1 wð Þ� �

dH wð Þ ¼ p− ∫
p

ψ−1 0ð Þ
H ψ zð Þð Þdz.

The LHS of (IC2)is the expected equilibrium surplus of type x, which Proposition 1

pins down as U xð Þ ¼ ∫
x

ψ−1 0ð Þ
H ψ tð Þð Þdt. Therefore, (IC2)is β pð Þ≥p− ∫

p

ψ−1 0ð Þ
H ψ zð Þð Þdz

because x− ∫
x

ψ−1 0ð Þ
H ψ zð Þð Þdz is increasing in x. Therefore, the two incentive-

compatibility constraints together uniquely determine the bid of type p

asβ pð Þ ¼ p− ∫
p

ψ−1 0ð Þ
H ψ zð Þð Þdz. It is easy to show that the invertibility constraint

β(p)>βp
−is always satisfied. QED Lemma 2

Proof of Lemma 3 The upper bound on probability acceptance must simply satisfy, for
every x,

A(b)(x−b)≤H(ψ(x))(x−β(x))
The RHS is maximized by x=p, so using the same arguments as in the proof of

Lemma 2, the constraint is thus A bð Þ≤ 1

p−b


 �
∫
p

ψ−1 0ð Þ
H ψ zð Þð ÞdzQED Lemma3

Proof of Proposition 4 The expected profit of a retailer who uses a participation fee
such that buyers with x≥xe enter solves the following problem:

xe ¼ argmax
z

1−F zð Þ½ �H β0 zð Þð Þ z−β0 zð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S zð Þ≡ expected surplus ofz

þ
Z
z

1

π0 min x; pð Þð ÞdF xð Þ
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where π0 xð Þ ¼ ∫
β0 xð Þ

0
β0 xð Þ−cð ÞdH cð Þ ¼ H β0 xð Þð Þ β0 xð Þ−E cjc < β0 xð Þð Þ½ �is the expect-

ed profit from a buyer with valuation x.The envelope theorem implies S′(z)=H(β0(z)), so the
FOC of the retailer’s problem is [1−F(xe)]H(β0(xe))=f(xe)[S(xe)+π0(xe)].

In words, raising the fee increases the payment of everyone above the entry
threshold (LHS) while decreasing the number of entrants, which results in a marginal
loss of the fee and bidding profit (RHS). In other words, the RHS is the marginal loss of
the gains from trade, because the H(β0(xe))β0(xe) cancels out in S(xe)+π0(xe):

[1−F(xe)]H(β0(xe))=f(xe)H(β0(xe))[xe−E(c|c<β0(xe))]
Both sides of the FOC are weighted by H(β0(xe))because no trade occurs when

c>β0(xe). Canceling out the weights results in the final FOC equation: ψ(xe)=E(c|c
<β0(xe)). QED

Proof of Proposition 5 For p<2/3, the relative profit advantage of the first-best strategy

over the minimum-bid strategy is ΠA pð Þ−Πm pð Þ ¼ 2p−1ð Þ3
12p →0 as p approaches 1

2 :

Claim a): Let Δ(p)=Πm
* (p)−Πe

*(p). There are three regions of p: First, for p < 4
7,

Δ pð Þ ¼ p 1−pð Þ
8 > 0 and obviously decreasing in p. Second, for 4

7 < p < 2
3, Δ(p) is

decreasing on the interval because Δ
0 4
7

� � ¼ − 1
56 < 0 and Δ″ pð Þ ¼ − 5

6−
8

147p3 < 0,

and Δ(p)>0 because and Δ 2
3

� � ¼ 127
5292 > 0 and Δ(p) is decreasing. Third, for

p > 2
3, Δ(p) is decreasing on the interval because Δ

0
1ð Þ ¼ − 55

10584 < 0 and

Δ″ pð Þ ¼ 1
6 þ 124

1323p3 > 0, and Δ(p) > 0because Δ 1ð Þ ¼ 55
10584 > 0 and Δ(p) is

decreasing.

Claim b): The equivalence for p≤ 2
3 is obvious from both strategies charging p. The

dominance for p > 2
3 follows from Π*

m pð Þ−Π*
fix pð Þ ¼ 2

27p−
1−E cð Þ

2

� 	2
¼ 8−3pð Þ 3p−2ð Þ

2

432p>0.

Claim c): Let Δ(p)=Πfix
* (p)−Πe

*(p). Consider p > 2
3, where Δ pð Þ ¼ 1

4−
4

147p−
3p
8 þ 7p2

48 .

We see that Δ 1ð Þ ¼ − 5
784 < 0 and Δ 2

3

� � ¼ 127
5292 > 0, so there must be at least one p* s.t.

Δ(p*)=0. To prove uniqueness, noteΔ(p) is decreasing on the interval becauseΔ
0
1ð Þ ¼ −

11
196 < 0 andΔ″ pð Þ ¼ 7

24−
8

147p3 > 0.

Claim d): Given the ranking established in a)-c), it is enough to show the
passive strategy is strictly less profitable than the participation-fee strategy
for all p and the fixed-price strategy forp > 2

3. The former follows from

Π*
e pð Þ−Π0 pð Þ ¼ p <

4

7
:
p 6−7pð Þ

24
> 0p≥

4

7
:

4

147p
> 0

�
. The la t te r fo l lows

from Π*
fix pð Þ−Π0 pð Þ ¼ 12−p 18−7pð Þ

48 , which is decreasing for p > 2
3 and positive at p=1.

QED Proposition 5.
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