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Abstract. Several of the auction-driven exchanges that facilitate programmatic buying of
internet display advertising have recently introduced “soft floors” in addition to standard
reserve prices (called “hard floors” in the industry). A soft floor is a bid level below which
a winning bidder pays his own bid instead of paying the second-highest bid as in a second-
price auction most ad exchanges use by default. This paper characterizes soft floors’ revenue-
generating potential as a function of the distribution of bidder independent private values.
When bidders are symmetric (identically distributed), soft floors have no effect on revenue,
because a symmetric equilibrium always exists in strictly monotonic bidding strategies, and
standard revenue-equivalence arguments thus apply. The industry often motivates soft floors
as tools for extracting additional expected revenue from an occasional high bidder, for ex-
ample a bidder retargeting the consumer making the impression. Such asymmetries in the
distribution of bidder preferences do not automatically make soft floors profitable. This paper
presents two examples of tractable modeling assumptions about such occasional high bid-
ders, with one example implying low soft floors always hurt revenues because of strategic
bid-shading by the regular bidders, and the other example implying high soft floors can

increase revenues by making the regular bidders bid more aggressively.
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1. Introduction
Since the world’s first banner ad in 1994 (Singel 2010),
advertising dollars have followed the shift of consumer
attention to digital media, reaching more than one-third
of total U.S. advertising spending by 2016. Despite
starting with display banner ads, the lion’s share of
digital advertising dollars was initially spent on search
ads, because they offered an unparalleled level of
targeting (Goldfarb 2014). However, for the first time in
the more recent history of digital advertising, spending
on display ads surpassed spending on search ads in
2016 (emarketer 2016). An improved targeting ability is
one of the key forces behind the resurgence of banners:
unlike the banners from the 1990s, today’s banner ads
are targeted to the individual viewer one impression at
a time by computer algorithms—a practice called “pro-
grammatic buying.” A dominant method of allocating
and pricing the display advertising space sold pro-
grammatically is real-time bidding (RTB), whereby each
available impression is sold to interested advertisers by
a sealed-bid auction that lasts a fraction of a second.
Experts estimate that more than $20 billion in advertising
is sold by RTB per year in the United States (emarketer
2016) in more than 30 trillion unique transactions
(Friedman 2015).

What are the rules of these trillions of auctions? The
vast majority of the “ad exchange” auctioneers use
second-price sealed-bid “Vickrey” auctions—a dramatic

shift from the obscurity of the Vickrey pricing rule in past
auction-driven marketplaces documented by Rothkopf
et al. (1990). However, several important players in the
RTB industry have recently partially reversed this shift
by introducing “soft floors”—bid levels below which the
auction’s pricing rule switches from second-price to first-
price, sometimes also called “high-bid.”" The “soft” part
of “soft floor” contrasts with a “hard floor”—a bid level
below which the auctioneer will not sell the impression,
also known as “reserve price” in the auction literature
(Myerson 1981). This paper provides the first theo-
retical treatment of soft floors and shows that their
usefulness depends on the distribution of bidder
preferences. Throughout this paper, bidders are as-
sumed to have independent private values. When the
bidders are symmetric (i.e., when their valuations are
drawn from the same distribution), I show that the use of
soft floors is misguided because they complicate bidding
and have no effect on expected revenue. When the bidders
are asymmetric in an RTB-relevant fashion (i.e., when
high-valuation bidders occasionally join the auction),
Ishow by two examples that soft floors can both hurt and
benefit the auctioneer, depending both on the magnitude
of the soft floor and on the valuation overlap between
the regular bidders and the high bidders. The next few
paragraphs introduce the three different modeling
assumptions used in this paper and preview the results
they imply. Please see Figure 1 for a representation of
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Figure 1. (Color online) Effects of Soft Floor on Auction
Revenue, and Assumptions They Rely on

MARKET SETUP: EFFECT: CONDITIONS FOR RESULT:

N Smmetric bidders -_ none (general result)
(Section 4)
(no effect)

N symmetric “regular” bidders
+ K randomly-present
high-valuation bidders
(Section 5)

when soft floor kicks in for
regular bidders.
holds for any hard floor

1 uniform “regular” bidder
+ 1 randomly-present
stochastically dominant
uniform bidder (Section 6)

when soft floor high enough

& seller caters to both bidders

& Pr(high bidder present) high
hard floor optimized — A profit|

all the modeling variants covered in this paper, by
section.

Aslong as the bidders are symmetric, I show that soft
floors have no impact on auction revenue. In other
words, when the different advertisers’ valuations of
each impression are drawn from the same distribution,
soft-floor auctions are revenue-equivalent with standard
auctions that have the same hard floor. The revenue-
equivalence result is not a trivial extension of the well-
known equivalence between first- and second-price
auctions: just because first- and second-price auc-
tions yield the same expected revenue (under bidder
symmetry), it does not immediately follow that their
hybrid arising from the presence of a soft floor will also
be revenue-equivalent with the simple second-price
auction: strategic bidders may react to the introduction
of a soft floor by playing mixed strategies or by pooling,
thus changing the relationship between valuations and
the chance of winning. The first main result of this paper
(discussed in Section 4) is a general proof that whereas
bidders indeed react to the introduction of a soft floor by
adjusting their bids, the resulting equilibrium is in pure
monotonic strategies. The monotonicity of the bidding
equilibrium in the soft-floor auction guarantees the soft-
floor auction does not change any bidder’s chance of
winning relative the second-price auction with the same
hard floor, which in turn keeps the expected revenue
of the auctioneer unaffected according to the revenue-
equivalence result of Myerson (1981). In the extensions,
analogous arguments are then used to also show that
revenue equivalence continues to hold even when bidders
participate randomly, and also when the soft floor is
hidden, as it tends to be on some exchanges.

Given the robust revenue equivalence in the sym-
metric model, the rest of this paper explores the ob-
vious possibility that a rationalization of the soft-floor
industry practice can arise from asymmetries among
bidders. Inspired by the industry analysts who origi-
nally motivated the use of soft floors (e.g., Weatherman
2013), I consider the possibility that high-value bidders
may occasionally enter the auction. For example,
a “retargeting advertiser” (whose website the customer
has just visited before arriving to the publisher

auctioning off the customer’s impression) likely
values the impression much more than other advertisers
who bid only on demographics. If such a high-value
advertiser were always present, there would be little
benefit to soft floors—the seller could simply increase the
hard floor; but such a high-value advertiser may not
participate in every RTB auction, so a soft floor might
seem to be a clever adaptive mechanism that automat-
ically activates a higher reserve price only when the
advertiser does appear (Weatherman 2013). In contrast
to this industry intuition, I show that adding randomly
appearing asymmetrically high bidders always makes
low-enough soft floors suboptimal for the auctioneer. On
the other hand, very high soft floors can increase revenue
under some assumptions. I now discuss both of these
contrasting examples in turn.

In the second main result of the paper (covered in
Section 5), I show that when the high bidders are
guaranteed to have valuations above the regular bid-
ders, soft floors low enough that all the high bidders
face second-price pricing reduce expected revenues.
The reason is that the strategic bid-shading by regular
bidders always more than offsets the additional pricing
pressure on the high bidders generated by the soft floor.
The revenue loss can be derived in closed form, and it is
bounded by the amount of revenue an auctioneer run-
ning a second-price auction would lose from losing one
of the regular bidders. The bound echoes the classic
result of Bulow and Klemperer (1996), who show that
arevenue gain from setting the hard floor optimally is
less than the gain from finding one more bidder.

If low soft floors hurt revenue, might higher ones
help? The analysis of higher soft floors that “kick in” for
the high bidders is not tractable, but tractability resumes
in a slightly modified asymmetric model when the soft
floor is so high that the auction effectively becomes
a first-price sealed-bid auction. The third main result of
this paper (covered by Section 6) provides a lower
bound of the profitability of a soft-floor auction in an
RTB-relevant asymmetric setting by analyzing the
revenue potential of a first-price auction when one
of two uniformly distributed potential bidders sto-
chastically dominates the other, but only participates
occasionally. This analysis extends the analysis of
equilibrium bidding by Maskin and Riley (2000) and
Kaplan and Zamir (2012) to random participation by
one of the two bidders. The bidding equilibrium is in
closed form, but the expected revenue calculation,
and hence the ultimate revenue comparison with a
second-price auction, involves an intractable integral.
Approximating the integral numerically, I find that
first-price auctions can revenue-dominate second-price
auctions as long as the high bidder’s chance of partic-
ipation is high enough to induce aggressive bidding by
the regular bidder. Because soft floor auctions weakly
dominate first-price auctions, this result is an example
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of a situation in which soft floor can strictly increase
the auctioneer’s revenue. The exact conditions for the
revenue dominance, as well as the magnitude of the
revenue difference, are sensitive to whether the auc-
tioneer can optimize the hard floor. Once the hard floor
is optimized for the demand situation, only a small
amount of additional revenue is available from also
optimizing the pricing rule.

2. Literature Review
The literature on online display advertising (for thor-
ough literature reviews, see Hoban and Bucklin 2015,
Choi et al. 2017, or Johnson et al. 2017) contains very
few papers about soft floors: Yuan et al. (2013) examine
data from a large ad exchange that uses soft floors and
estimate that more than half of the exchange’s revenue
is transacted using the first-price rule instead of the
second-price rule. They conclude soft floors are an
economically important phenomenon in the RTB mar-
ketplace. In contrast to the predictions of this paper,
Forsch et al. (2017) analyze the profitability of soft floors
using a large-scale field experiment and conclude that
even relatively low soft floors can increase the auction-
eer’s revenue. One possible explanation for the diver-
gence between this paper’s predictions and the field
experiment’s results is that the bidders in the experiment
did not have enough time to adjust their strategies to
the novel mechanism: unlike the rational bidders
assumed herein, the bidders in Forsch et al. (2017) do
not reduce their bids when soft floors are introduced.
This paper also contributes to the broader literature
on mechanism design in the online display advertising
industry. Most work in that literature focuses on op-
timizing the pricing and allocation rules of RTB ex-
changes to address specific ways the bidders for online
display impressions differ from bidders assumed in
canonical models. For example, Abraham et al. (2016)
focus on the informational asymmetry arising from
informative “cookies” available to only some bidders in
a pure common-value model, and they compare the
two dominant auction pricing rules in terms of revenue.
Arnosti et al. (2016) also study the impact of bidder
asymmetries in a common-value model, with the asym-
metry arising from the difference between “performance
advertisers” who know their valuations of each impression
and “brand advertisers” who do not. They focus mainly on
market efficiency and propose a new theoretical mecha-
nism that is nearly efficient. In contrast to Abraham et al.
(2016) and Arnosti et al. (2016), this paper assumes that
bidders have and know their private values, focuses on the
ex ante asymmetry between “regular” bidders who
tend to bid low and often and “high” retargeting bidders
who bid high but rarely, and restricts attention to a
prominent design implemented in the industry—the
soft-floor auction. Celis et. al (2014) take a different
approach to analyzing the competition between regular

and retargeting bidders: instead of considering an ex
ante asymmetric set of bidders, they assume an interim-
asymmetric model of bidders drawn from a mixture
of regular bidders poorly matched with the customer
making the impression and high-valuation bidders who
do match with the customer well. They note that such
a mixture distribution is irregular in the sense of Myerson
(1981), so standard auctions may not perform well, and
they propose a novel mechanism called “buy-it-now or
take-a-chance” which does better.

All of the above mechanism-design papers—
including this paper—focus on the sale of a single
impression. There is also an emerging stream of work
that addresses the multiunit nature of RTB marketplaces.
For example, Balseiro et al. (2015) use a modern fluid
mean-field equilibrium notion to simplify an otherwise
intractable model of budget-constrained bidders par-
ticipating in a sequence of second-price sealed-bid auc-
tions. Having outlined the contribution of this paper
to the literature, I now describe the main mechanism
of interest—the soft-floor auction.

3. Soft-Floor Auction Definition and Other
Supply-Side Assumptions

One object (e.g., an ad impression in the RTB context) is
for sale. The auctioneer values the object at zero and
sets two reserves: a hard floor & > 0 and a soft floor s > .
The soft-floor sealed-bid auction collects bids, sorts
them such that by >bp) > b)..., and determines the
auction winner and the price paid as follows:

(1) When by > s, the bidder who submitted b, wins
and pays max{s, b }.

(2) When s>b(;) > h, the bidder who submitted b,
wins and pays b().

(3) When > b, the auctioneer keeps the object.

In words, the soft floor functions as a reserve price in
a second-price sealed-bid auction (2PSB) as long as at
least one bid exceeds it (case 1). When no bids exceed s,
the auction becomes a first-price sealed-bid auction
(1PSB) with a reserve price equal to /i (cases 2 and 3).

Throughout this paper, I assume # is common knowl-
edge; that is, the auctioneer announces the reserve
price before the auction. Regarding the bidders” in-
formation about s, I first assume the auctioneer also
preannounces s (or that, equivalently, the bidders
figure out both values through experimentation) and
then address the possibility of keeping s hidden from
bidders whenever tractable.

An analysis of the revenue implications of soft floors
requires a demand-side model of bidders. This paper
considers independent private-valuation (IPV) bidders—
a standard assumption in auction theory. IPV is a
reasonable model of bidders in the RTB context that
motivates this paper: “valuation” of an impression is
the increase in the advertiser’s profit from winning the
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impression, “private” means no advertiser can learn
about his own valuation of the impression from how
much another advertiser values it, and “independent”
means the values are statistically independent of each
other in the population of bidders. Given the IPV as-
sumption, a population distribution of valuations com-
pletes the model. This paper makes three partially
nested assumptions about the distribution, summa-
rized in Figure 1 and introduced in the previous sec-
tion. I turn to the symmetric case next.

4. Symmetric Bidders: Soft Floors Have

No Impact on the Auctioneer’s Revenue
Suppose N bidders indexed by i =1,2,...,N have private
valuations v; drawn independently from a continuous
distribution F with full support on [0,M]. Following
Krishna’s (2009) notation, let G be the distribution
of the maximum from N — 1 independent and iden-
tically distributed (iid) draws from F, itself denoted Y7:
G(Y1) = FN71(Yy), and let X; be the highest of N iid
draws from F, distributed FN(X;).

This section demonstrates that when bidders are
symmetric, soft floors have no impact on the auction-
eer’s expected revenue. The proof proceeds in two
steps. First, for any s > h >0, I construct a monotonically
increasing equilibrium bidding strategy f(v) that best
responds to s and k. Second, the fact that the bidding
strategy is monotonic means the soft-floor auction allo-
cates the object to the same bidder as a standard auction
with a hard floor of & would, and so the revenue-
equivalence theorem of Myerson (1981) implies the
soft-floor auction also produces the same expected
revenue to the auctioneer. The exact form of the bidding
equilibrium depends on the bidders” information about
the soft floor. The following subsection (Section 4.1)
analyzes the case of the soft floor being common
knowledge among a fixed set of participating bidders.
Section 4.2 then generalizes the bidding strategies to
bidders participating randomly, and Section 4.3 takes up
the case of bidders uncertain about the soft floor at the
time of bidding. The main revenue-equivalence result is
outlined and discussed in Section 4.4.

4.1. Bidding Equilibrium When the Soft Floor

Is Common Knowledge and All

Bidders Participate
I begin the exposition of bidding in a soft-floor auction
under the canonical assumption that all N bidders know
s and participate in the auction for sure. Let §,(v) denote
the standard symmetric bidding equilibrium in a 1PSB
with N bidders and a public reserve h (for a detailed
derivation, see Krishna 2009):

‘Bl(v) =h G(h)

o) G, 80 = E[max{¥y, i1 <],

@

where the roman numeral subscript on f indicates the
first-price pricing rule. Then the bidding equilibrium
B(v) in the soft-floor auction can be characterized in
terms of B,(v) as follows:

Proposition 1. When s < ,(M), the following is a unique
symmetric monotonic pure-strategy equilibrium of the soft-
floor auction:

pior = { DP9 ),

v>B7(s) v

When s>p,(M), the soft-floor auction becomes a 1PSB
auction, and p(v) = p,(v).

Please see the appendix for detailed proofs of all
propositions in this paper. The intuition for the result is
as follows: when s < §,(M) (i.e., when the highest bidder
would bid above it in a 1PSB), the equilibrium f in-
volves a jump discontinuity at a valuation v* such that
B,(v*) = s. Bidders with v < v* shade their bids as if they
were in a 1PSB auction. They effectively ignore the
higher-valuation bidders because they cannot win
against them. Bidders with v > v* bid their valuations as
if they were in a second-price auction. Their bids are
unaffected by the behavior of lower-valuation bidders,
because bidding one’s valuation is a dominant strategy
under the 2PSB incentives. The jump discontinuity’s lo-
cation in the space of valuations and the magnitude of the
jump ensure no bidder wants to unilaterally deviate from
the pricing rule “assigned” to him by his valuation.

Example (F = Uniform[0,1]). Illustrating Proposition 1
on a concrete distributional example is useful. A uni-

form distribution of valuations implies G(x) = xN~1, so
the 1PSB bidding strategy is
N-1 N
ﬁI(U) = T'U + W (2)

Figure 2. Equilibrium Bidding Strategy with a Known Soft
Floor and Guaranteed Bidder Participation

1

09r

bid A(v)

05 0.6 0.7 0.8 0.9 1
valuation v

Notes. F = uniform [0,1], s = 0.6, and h = 0.5 (the I is optimal given

the F). The dashed line indicates the 45° line; the dotted vertical lines

indicate the jump discontinuities at v* for the given numbers of

bidders indicated by the numbers next to the lines.
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The indifference equation ,(v*) = s becomes (N — 1) -
()N =sN(@*)N"! + hN =0, which does not have a
closed-form solution for a general N, but does for
N=2:0v%(5;N=2)=s+Vs2 —h2<1 <:>s<#. Figure 2
illustrates the bidding function p(v) for N = 2, 3, 4, and
10. I now turn to the possibility that the bidders par-
ticipate randomly.

4.2. Bidding Equilibrium When the Soft Floor Is

Common Knowledge and Participation

Is Random
One of the apparent benefits of a soft floor is its ability to
put pricing pressure on a single high-valuation bidder,
who only pays the hard floor & under 2PSB rules. When
such a bidder’s presence is assured, the auctioneer can
simply increase the hard floor; but when the number of
bidders is uncertain, the soft floor s > h can “kick in”
precisely when there happens to be just one bidder.
I'will show this intuition is incomplete because it does
not consider the associated revenue decrease when
there happen to be multiple bidders.

Assume N symmetric potential bidders exist, and each
of them enters independently of the other with proba-
bility 0 <a <1. Because an entrant might face fewer
opponents, he should bid less aggressively compared
with facing all potential opponents for sure. Indeed,
Harstad et al. (1990) show the existence of a f,(v) <
p,(v), which can be expressed as a weighted average of
the contingent 1PSB bidding functions that would apply
for a fixed number of present bidders between 1 and N.
Please see Equation (A.7) in the appendix for the g (v)
for general F when N = 2. A concrete example with
a uniform distribution is again helpful:

Example (F = Uniform[0,1], N = 2, and h = 0). This ex-
ample makes clear how random participation reduces
1PSB bids relative to certain participation:

av? (1-a)

syl B e ey R

Not surprisingly, Proposition 1 generalizes to the sit-
uation with random participation:

Corollary 1. For any s < (M), the following is a unique
symmetric monotonic pure-strategy equilibrium of the soft-
floor auction:

v<B.1(s) :B,(0)
v>,8;1(s) v

When s>p,(M), the soft-floor auction becomes a 1PSB
auction, and p(v) = B, (v).

o) = |

The proof is analogous to the proof of Proposition 1,
with G(v)=(1-a)+aF(v) as the equilibrium probability

Figure 3. Equilibrium Bidding Strategy with a Known Soft
Floor and Two Potential Bidders Who Participate
Randomly.

1

bid f(v)

0=0.4

2]

0=0.2

valuation v

Notes. F=uniform[0,1],h=0,s=0.2, N =2. The dashed line indicates
the 45° line; the thicker dotted line indicates the 1PSB bidding strategy
with two bidders, and the vertical lines indicate the jump
discontinuities at v* for the participation probabilities shown next
to the jumps, if any.

of winning. Figure 3 illustrates the bidding strategies for
a range of s in the uniform example.

4.3. Bidding Equilibrium When the Soft Floor Is
Hidden at the Time of Bidding

Suppose the bidders are uncertain about the soft floor
at the time of bidding, and they all summarize their
beliefs about it by some distribution 2 on [i,M]. Optimal
bidding must now average over the possibility that the
soft floor happens to be low (and 2PSB rules will thus
apply) and the possibility that the soft floor happens to
be high (and the price paid will be equal to the winning
bid). Unlike in the previous two subsections, charac-
terizing the equilibrium in closed form is not possible
even in the uniform example. However, the following
proposition provides weak sufficient conditions for a
symmetric monotonic equilibrium to exist and bounds
the resulting bidding function below with f,(v):

Proposition 2. When f(v)- FN=2(v) and Q(v) are contin-
uous on [h,M], the sealed-bid auction with a hard floor h and
a hidden soft floor drawn from Q) on [h,M] has a symmetric
pure-strategy equilibrium characterized by an increasing
bidding function p(v)> p,(v) that satisfies

8(0)(@ - B(v)

PO = Gl - ago)]

)

The proof uses the Peano existence theorem to assure us
Equation (4) has a solution. Compared with the 1PSB
differential equation that gives rise to f,(v), Equation (4)
adds the term in the square bracket. Because B(v) is thus
steeper everywhere, the relative ranking of the two
bidding functions follows.
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Figure 4. Bidding Strategy When Soft floor Is Hidden and
Bidder Participation Is Guaranteed

1

0.9

08

bid f(v)

071

06

05 06 0.7 08 0.9 1
valuation v

Notes. F =uniform [0,1], and /1 = 0.5 (the ) is optimal given the F), and

s ~ Uniform[h,1]. The dashed line indicates the 45° line. The dotted lines

indicate 1PSB bidding strategies without a soft floor, and the solid lines

indicate bidding strategies with a hidden soft floor. Several levels of the
number of bidders are indicated by the numbers next to the lines.

Intuitively, relative to 1PSB, random soft floors partially
mitigate the increased payment associated with higher
bids by switching the pricing rule to 2PSB. The resulting
“random discount” gives the bidders an incentive to raise
bid levels, and so the f(v) exceeds equilibrium bidding
in a 1PSB with the same number of bidders everywhere
above /1 . See Figure 4 for a concrete uniform-distribution
example.

4.4. Revenue Equivalence Under Bidder Symmetry
All of the previous subsections (Sections 4.1-4.3) find
a monotonically increasing symmetric pure-strategy
equilibrium of the soft-floor auction game. Under all
three potential assumptions regarding the bidders’ in-
formation about the soft floor and the bidders” partici-
pation, the introduction of a soft floor therefore does
not affect any bidder’s probability of winning. The in-
troduction of a soft floor also does not affect the payoff of
the bidder with the lowest trading valuation v = h, who
makes zero surplus both with and without the soft floor.
Therefore, the revenue-equivalence result of Myerson
(1981) implies the soft floor does not affect the auc-
tioneer’s revenue and the bidders” surpluses—a fact
I summarize in the next proposition.

Proposition 3. Suppose bidders are symmetric in their
waluations, their participation behavior, and their beliefs about
the soft floor. Then, for every hard floor h, the introduction of
a soft floor s > h has no effect on the auctioneer’s revenue or
any bidder’s expected surplus.

The “magic” of revenue equivalence stems from the
fact that we only need to consider the allocation prob-
ability (the chance of winning) for every bidder type—
the revenues are then implied by incentive compatibility.
Please see Myerson (1981) for the original result and

Krishna (2009) for the straightforward extension to the
case of randomly participating bidders.

The case of randomly participating bidders is es-
pecially interesting to analyze deeper because it seems
to agree with a common argument in favor of soft
floors. Let N = 2 to simplify the combinatorics. Bidders
with v < have no impact on revenue. When only one
bidder with v > h happens to participate, he wins for
sure regardless of the pricing rule. Whereas he would
pay only h in the 2PSB, the soft-floor auction charges
him more, namely min(g,(v),s) > h. It seems that this
revenue advantage of the soft-floor auction over 2PSB
might dominate its associated revenue disadvantage
when both bidders happen to participate and they both
have v > h because that scenario happens much less
often. For example, when a = h =1/2, the chance of
only one v > h bidder participating is 3/8—three times
greater than the chance that both bidders participate and
have v > h. Proposition 3 shows that $,(v) is calibrated
such that the single-bidder advantage of the soft-floor
auction is exactly offset by its two-bidder disadvantage.
In the appendix, I demonstrate the revenue equivalence
under random participation explicitly (i.e., without re-
lying on the mechanism-design results used in the quick
proof of Proposition 3) to illustrate how the advantage
and the disadvantage cancel each other out in the ex-
pected revenue calculation.

Reflecting on the predictions of this section for bid-
ding behavior is also useful empirically. Looking at
Figures 2—4, one can make the following observations:
keeping the hard floor constant, adding a soft floor
should lead to bid-shading by low-valuation bidders,
and so the distribution of the observed bids should
become more skewed to the right. If the soft floor is
common knowledge, the distribution of observed
bids should also have a hole just above the soft floor.
The data collected by Forsch et al. (2017) do not have
either of these features, suggesting the bidders in the
experiment did not rationally adjust their bidding
strategies to the presence of the soft floor.

5. Randomly Appearing High-Valuation
Bidders: Low Soft Floors Reduce
Auctioneer’s Revenue, and High Soft
Floors Break the Monotonicity of
Bidding Strategies

In a prominent explanation of soft floors, Kevin Weather-

man of the MoPub platform used a stylized example of

a seller who sets a hard floor of $1 and faces occasional

bids around $2 in addition to regular bidding activity

in the $0.75-$0.90 range (Weatherman 2013). Weath-
erman’s argument for why such a seller would benefit
from soft floors is that the seller can lower his hard
floor toward the bidding range of the regular bid-
ders while introducing a soft floor above $1: such an



Zeithammer: Soft Floors in Auctions
Management Science, Articles in Advance, pp. 1-18, © 2019 INFORMS

7

arrangement seems to preserve the price pressure on
the high bidder (when exactly one such bidder
happens to participate—multiple high bidders put
price pressure on each other) while also collecting
more revenue from low bidders (when no high
bidders happen to be present). As Weatherman puts it,
“the goal is to ‘harvest’ higher bids while not compro-
mising on lower bid opportunities” (Weatherman 2013).
Diksha Sahni of AppLift eloquently makes the same ar-
gument by pointing out that “when the gap between a bid
and the second bid is significant, it may create a gap
between potential revenues and actual revenues” (Sahni
2016). Motivated by these industry experts, this section
analyzes the possibility of randomly present high-
valuation bidders somehow making soft floors prof-
itable for the auctioneer. I focus on the following
asymmetric case:’

Definition. Let a market with randomly appearing high-
waluation bidders always contain N “regular” bidders
drawn from some F on [0,1] and K potential “high”
bidders with valuations drawn from some @ on [L, M]
with L > 1. The high bidders participate randomly and
independently of each other with probability a. Par-
ticipation by competing bidders is not observable by
anyone before bidding.

An analysis of 1PSB equilibrium bidding in the
above-defined market is not tractable even with @ = 1
(Maskin and Riley 2000), so assessing the profitability
of a soft floor so high that nobody pays it is difficult.
When the soft floor “kicks in,” the analysis remains
intractable when s> p,(1): no globally monotonic
equilibrium strategy exists that would produce an
incentive-compatible separation of the high bid-
ders above s from the rest of the bidders. On the
flipside, when s<p,(1) (i.e., the soft floor is low
enough that at least some regular bidders bid above
it), the analysis of equilibrium bidding is simple in
that the soft-floor auction has the same equilib-
rium (outlined in Proposition 1) as without the high
bidders:

Lemma 1. When the soft floor is small enough that at least
some regular bidders would bid above it in a 1PSB, i.e., when
s < B,(1), the soft-floor auction in a market with randomly
appearing high-valuation bidders has the same bidding
equilibrium as the soft-floor auction without the high-
valuation bidders characterized in Proposition 1, namely

_[02B716) (@)
plo) = {v>ﬁj‘1(s) :vI
for both bidder types.

The argument behind Lemma 1 is straightforward: if
the high bidders indeed bid their valuations, the reg-
ular bidders assume they can only win when no high

bidder is present, and so they behave the same as in an
auction without high bidders. The high bidders, on the
other hand, do not want to deviate from bidding their
valuations to bidding the soft floor, because the asso-
ciated lower price comes with leaving too many po-
tential wins on the table. Intuitively, the low-enough
soft floor keeps bidding tractable because it guarantees
the bidders facing 1PSB rules are symmetric (they are
just the regular bidders with valuations up to v*) while
all the remaining bidders face 2PSB incentives that are
unaffected by asymmetries (bidding one’s true valuation
remains an equilibrium strategy in a 2PSB even with
asymmetries because it is a dominant strategy).

So can soft floors increase revenue in this market?
Because the bidding equilibrium is the same as in
Proposition 1 when s <,(1), the auctioneer’s revenue
from a soft-floor auction is easy to compare with that
in a 2PSB auction with the same hard floor. When no
high bidder enters, Proposition 3 proves that the soft
floor does not impact revenue. When two or more high
bidders enter, 2PSB rules with bids above L > s de-
termine the price in the soft-floor auction, so the soft
floor does not impact revenue. Adding the soft floor
only makes a difference when exactly one high bidder
enters. The lone high bidder wins and pays either s or
the highest regular valuation X;, whichever is greater:
FN(v*)s + (1 — FN(v*))E(X1| X1 > v*) instead of paying
E(max{Xj,h}) without the soft floor. The revenue
impact of soft floor is therefore

TT*(h,5) - TTps(h) = Pr(1 high) [ F¥(0")s

+ (1 = FN(©*)E(X1| X1 > v*) — E(max{Xy, h})], ©
where the probability of exactly one high bidder en-
tering is Pr(1high) = Ka(1 — a)*"'. Now recall that s
can be expressed as a conditional expectation of order
statistics: s = B,(v*) = E[max{Y1, h}|Y1 <v*]. Substitut-
ing for s in Equation (5) yields

TTA(h, 5) — TTgs(h)

Ka(1l — a)k-1
= FN(v*) E(max{Y1, h}|Y1 <v*)
Pr(X;<s) s

+ (1= FN(0*)E(X1| X1 > v¥)

(6)
— FN(v*)E(max{ Xy, h}| X1 <v*)

=E(X1]X1 >0v*) becausev*>h

— (1 = FN(v*)) E(max{Xy, i} X1 > %)

= FN(v*)[E(max{Y71, h}|Y1 < v*)
— E(max{Xy, h}| Xy <v*)] <0.
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I have just derived the key ingredient of the following
result:

Proposition 4. For every hard floor h, adding a soft floor
small enough that the highest reqular bidder would bid
above it in a 1PSB reduces the expected revenue com-
pared with a 2PSB with the same hard floor. The expected
revenue reduction increases in the soft floor magnitude,
and it is the same as if the auction followed 2PSB pricing,
but lost one regular bidder whenever exactly one high-
valuation bidder entered and all the regular bidders
happened to have valuations low enough to bid below the

soft floor.

Note that soft floors reduce expected auctioneer
revenue precisely when they “kick in” to put pricing
pressure on a randomly appearing high bidder, that
is, precisely in the situation discussed by soft-floor
advocates (e.g., Weatherman 2013, Sahni 2016). The
advocates are correct in noting the soft floor adds
pricing pressure on the high bidder whenever he is
present; but Proposition 4 shows the coincident bid-
shading by low-valuation regular bidders more than
erodes the benefits of the added pricing pressure.

Because the revenue reduction is increasing in s
and weighted by the probability of exactly one high
bidder entering, the revenue reduction is bounded
by the revenue loss from losing one regular bidder.
Proposition 4 thus echoes the classic result of Bulow
and Klemperer (1996), who show that a revenue gain
from setting the hard floor optimally in a symmetric
model is less than the gain from finding one more
bidder. Unlike in the Bulow and Klemperer (1996)
case in which reserves obviously discourage bidder
entry, it is not clear whether having a soft floor might
encourage bidder entry; but if it did, Proposition 4
shows that the auctioneer would always prefer add-
ing a small soft floor to losing one regular bidder in
a 2PSB.

6. Example of Profitable Soft Floors:
First-Price Auctions Can
Revenue-Dominate Second-Price
Auctions in a Market with a Randomly
Appearing Stochastically

Dominant Bidder
The previous section argues that low-enough soft
floors hurt expected revenue of the auctioneer. Un-
fortunately, the analysis of medium soft floors in
the market with randomly appearing high-valuation
bidders defined above is not tractable. However,
tractability resumes for very high soft floors in a slight-
ly modified but still RTB-relevant market with randomly
appearing stochastically dominant bidders, where a “very
high” soft floor is one that never kicks in. Such a soft floor

effectively implements 1PSB in a marketplace origi-
nally designed around the 2PSB rule. The soft-floor
auction obviously weakly dominates both the 1PSB
auction and the 2PSB auction. So a situation in which
1PSB strictly revenue-dominates 2PSB is an example
of a market in which soft floors strictly increase the
auctioneer’s expected revenue. This section provides
such an example.

Throughout this section, I assume that there is only
one regular bidder (bidder 1) and one randomly
appearing bidder (bidder 2), both have uniformly dis-
tributed valuations, and the randomly appearing bid-
der who appears with probability « is stochastically
dominant in that vy ~U[0,1] while v, ~U[0,M] for
some M >1. The common lower bound of the two val-
uation supports simplifies analysis, and the stochastic
dominance captures the idea of a “high” bidder (dif-
ferently from Section 5, which assumed guaranteed
dominance). To provide an example of a market in
which soft floors increase revenue, this section exhibits
a range of (a, M) parameter values for which the 1PSB
pricing rule (and hence also the soft-floor auction)
revenue-dominates the 2PSB pricing rule even with
rule-optimized hard floors.

6.1. The Optimal Mechanism Favors the
Regular Bidder

Before comparing the revenues of the two standard
pricing rules, it is useful to consider the optimal
mechanism of Myerson (1981), which would allocate
the impression to the bidder with the highest positive
virtual value ¢,(v;) = v; — 1}%’05)“) The random partic-
ipation of the high bidder does not change his virtual
value, and the uniform F; then imply ¢, (v1) = 20 —
1>2v, = M = 1,(v2). Therefore, the optimal mecha-
nism would impose a higher hard floor of h, = M/2
on the high bidder than the optimal hard floor of h; =
1/2 for the regular bidder, and it would level the
playing field further by favoring the regular bidder
in picking the auction’s winner. Specifically, when
Y,(v;) >0, it would award the impression to the reg-
ular bidder whenever v;>uv, — % The problem
with such a scheme is obvious: the high bidder
would try to obscure its identity—a behavior called
“false-name bidding” by Arnosti et al. (2016). Nev-
ertheless, the optimal mechanism suggests when
1PSB is likely to have a revenue advantage over
2PSB, namely whenever the regular bidder bids ag-
gressively in the 1PSB, and thus wins the auction
despite having a smaller valuation than the high
bidder.

6.2. Equilibrium Bidding Under the First-Price Rule
Bidding in the 2PSB is in dominant strategies, and the
derivation of the expected revenue m; and its associated
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optimal hard floor h;, are relegated to the appendix.
In contrast, the characterization of 1PSB bidding in
the market with a stochastically dominant randomly
appearing bidder is new to the literature, extending the
analysis of Kaplan and Zamir (2012) who derived the
a = 1 special case for an arbitrary /1, and themselves
extended the result of Griesmer et al. (1967), who derived
the « =1 & h = 0 special case. The next proposition
characterizes the equilibrium inverse bidding functions
in closed form:

Proposition 5. For any h,a €[0,1] and M > 1, equilibrium
bidding involves both bidders submitting bids in the [h, b]
interval, where

M + a(h? + M — hM)
a+M '

b=

The inverse bidding function of the regular bidder is

o1(b) h(A + h)
1 = _ 1_6’
A+b+[h(A + h)—(A + b)](L=h)0(b+h+ A
+hr[nA+h)-(A+ )](b—h) (b+h+A)
where
A:M(l—a)
04
and
h
0= v

The inverse bidding function of the high bidder is

o1(b) + A] = h(h + A)

_U
v2(b) = 01(b) — b

The proof generally follows the approach of Kaplan
and Zamir (2012), adapted for the randomly missing
bidder. Figure A.2 in the appendix illustrates the fol-
lowing intuitive comparative statics of equilibrium
bidding: as a decreases, the support of the bids shrinks
down to h (b approaches &), and most regular bidders
bid just above 1, effectively banking on the high bidder
not showing up. In response, the high bidder becomes
less aggressive (bids less for a given value of v) because
the regular bidder’s behavior presents an opportunity
to win very often. As M increases, the support of the
bids expands to accommodate the greater gains of
trade on the table, the high bidder becomes more ag-
gressive in his attempt to win the gains from trade, and
the regular bidder becomes more aggressive in re-
sponse. No closed-form solution exists for the bidding
functions shown in Figure A.2, but bidding functions
are not necessary for the computation of the expected

1PSB revenue 7t;, because the expected revenue follows
directly from the inverse bidding functions v;(b):

Lemma 2. E(rylh<1)

=h[1-h(1-a+ah)]+ /b 1-v1(x)[1-a+ avy(x)]dx.
h

The integral in Lemma 2 does not have a closed form
but can be trivially approximated numerically as a
sum on a fine grid. Optimizing the hard floor is then
straightforward. I now turn to comparing the revenue-
generating potential of the two pricing rules.

6.3. Comparing the Expected Revenue of the First-
Price Rule (1PSB) with the Second-Price
Rule (2PSB)
Let the percentage revenue lift from 1PSB versus 2PSB be
defined as follows:

% revenue lift from 1PSB versus 2PPSB
_ E(ulh = hy) — E(mylh = hy) )
E(T(H|h = h;l) '

The top panel of Figure 5 plots the percentage revenue
lift as a function of a, for three qualitatively different
examples of M: 1, 2, and 3. When M = 1, the bidders’
valuations are symmetric, but one bidder participates
randomly. When M <2, the optimizing seller caters to
both bidders regardless of pricing regime by setting both
hard floors below 1. When M = 3, the seller caters to both
bidders when « it low, and only the high bidder otherwise.
To aid in understanding the forces underlying the revenue

Figure 5. Revenue Comparison of the Two Pricing Rules for
Different M, as a Function of «

0.04
% 0.03 - .- -
£ & oot
w
2 > oot
s M
2R
> & og
2= \
X g -0.01
& 002 -
0,03 ! . ‘ . : ! . ‘ .
0 01 02 03 04 05 06 07 08 09 1
probability high bidder present (o)
0.1
—
(=}
o
AP CE R
8 5 B rereeeseesnseenn.. .~
BE NG,
g3 °
5 E
4 ~
S 8‘-0 05 S~ o
R=|
0.1

. . I L . I L
0 0.1 0.2 03 04 0.5 08 0.7 08 09 1

probability high bidder present (o)



10

Zeithammer: Soft Floors in Auctions
Management Science, Articles in Advance, pp. 1-18, © 2019 INFORMS

results, the bottom panel plots the percentage differ-
ence in the optimal hard floor, defined as % hard floor

difference = % on the same « axis as the top panel.

Slowly unpacking the different effects illustrated in
Figure 5 is helpful, starting with the high bidder always
being present (¢ = 1): when M = 1, the two bidders are
symmetric, and standard revenue equivalence thus im-
plies no difference in revenue. When M = 2, we have the
“stretch case” of Maskin and Riley (2000)—a situation
they show to favor the 1PSB as long as /1 = 0. I find 1PSB
continues to dominate 2PSB in the stretch case even with
optimal rule-specific hard floors: in addition to the ag-
gressive bidding by the regular bidder, the optimal 1PSB
is also more efficient (has lower reserve; see bottom panel
of Figure 5). Once M increases to 3, revenue equivalence
under « =1 is restored because both pricing rules only
cater to the high bidder and effectively turn from auc-
tioning to posted pricing.

Now consider intermediate values of a: Figure 5
indicates 1PSB can revenue dominate 2PSB when
enough asymmetry exists in valuations (M > 1), the
high bidder’s participation is likely enough to make the
regular bidder bid aggressively (a high enough), and
the optimal hard floor is low enough to cater to both
bidders (o and M small enough). A goldilocks («, M)
is thus required for 1PSB to dominate 2PSB. One way
to understand the revenue-dominance of 1PSB is via
its better approximation of the optimal mechanism
whenever it induces the regular bidders to bid ag-
gressively and effectively favors them in allocation.

Finally, consider very low a: when a = 0, the two
pricing rules are revenue-equivalent because they again
reduce to posted pricing with a single bidder. When « is
small but positive, 2PSB outperforms 1PSB for all M
because the 1PSB’s b approaches 1, whereas 2PSB in-
volves a broader range of prices (up to 1). The optimal
hard floor for 1PSB rises above that of 2PSB to try and
compensate for the low bids, but it apparently cannot
compensate fully.

To generalize from the three particular levels of M
considered in Figure 5, as well as to examine the role of
hard-floor optimization, please see Figure 6, which
displays a contour plot of percentage revenue lift from
1PSB. One way to summarize the patterns in Figures 5
and 6 is as follows:

Summary of Revenue Comparisons. The first-price rule
revenue dominates the second-price rule when « is high
enough for the reqular bidder to bid aggressively. When the
hard floor is optimized, a second condition for the revenue
dominance of the first-price rule is the asymmetry being
small enough for the seller to cater to both bidders instead of
just making a take-it-or-leave-it offer to the high bidder.
The result illustrated by the right-hand panel of
Figure 6 extends the findings of Maskin and Riley (2000),

Figure 6. Percentage Revenue Lift of 1PSB vs. 2PSB in
(a, M) Space
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Notes. The shaded area indicates the region of the parameter space
for which 1PSB generates higher expected revenue than 2PSB. The
contours in the left plot are in 0.01 intervals, and the contours in the
right plot are in 0.1 intervals.

who separately analyze the two asymmetries involved
in the construction of the RTB-relevant “high” bidder
considered here and find that (1) stretching the dis-
tribution of bidder 2 relative to the bidder 1’s distri-
bution favors the first-price rule, and (2) random
participation of bidder 2 (which Maskin and Riley call
“shifting of probability weight to the bottom of sup-
port”) favors the second-price rule. The right-hand
panel of Figure 6 replicates both individual effects as
special cases (@ =1, M > 1) and (@ < 1, M = 1), re-
spectively, and shows the effect of a combination of both
asymmetries on the relative profitability of the two price
rules. One way to interpret the joint effect is to conclude
the effect of random participation is stronger than the
effect of stochastic dominance by one bidder because the
2PSB rule revenue dominates the first-price rule for all
a < 0.75 regardless of M, and the revenue loss from
picking the wrong pricing rule is much bigger when the
1PSB rule is chosen erroneously than when the 2PSB rule
is chosen erroneously.

The left-hand panel of Figure 6 then examines how
the joint effect of “stretching” and random participa-
tion changes when the auctioneer optimizes the hard
floor. Two qualitative differences relative to the right-hand
panel emerge, each due to the auctioneer effectively
catering to only one bidder: when the high bidder is
unlikely to show up (a low), the auctioneer caters only
to the regular bidder. When the high bidder is likely to
show up and likely to have a much higher valuation
than the regular bidder (o and M high), the auctioneer
caters only to the high bidder. In either situation, no
revenue difference exists between the two pricing rules.

One important difference between the left and the right
panels in Figure 6 is the magnitude of the revenue lift:
when the hard floor is optimized, the absolute difference
between the two pricing rules is only a few percentage
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points. By contrast, 1PSB can increase profit by more than
30% when no binding hard floor exists and « is very high,
but it can also lose the entire potential revenue when « is
very low. Once the hard floor is optimized for the («, M)
situation, only a small amount of revenue seems to be
available from also optimizing the pricing rule.

7. Discussion

Soft floors have emerged in the RTB digital display
advertising industry as a potential tool for increasing
publisher revenues. This paper shows soft floors are not
likely to deliver on this promise in the long run when the
bidders are ex ante symmetric, even if the auctioneer
keeps the exact soft-floor level hidden from the bid-
ders, or when bidders participate in the auction ran-
domly. Adding randomly appearing “high” bidders
(e.g., retargeting advertisers in the RTB context) to the
auction does not automatically make soft floors profitable
either: the profitability of soft floors depends on their
magnitude and on the amount of valuation overlap be-
tween regular and high bidders. To illustrate the nuanced
profitability of soft floors in RTB-relevant asymmetric
markets, this paper provides both an example in which
soft floors reduce revenue and an example in which they
increase it. Overall, the paper provides three main results
shown in Figure 1. Inow discuss the three results in turn,
with one paragraph devoted to each of them.

When the bidder valuations are all drawn from the
same distribution (and the bidders are thus “sym-
metric” in the auction-theory parlance), low-valuation
bidders shade their bids down in response to a soft
floor, but the fact that low-bidding winners pay their
bids exactly compensates for the seeming loss of revenue.
Soft floors are revenue neutral because the equilibrium
bidding function remains monotonically increasing as
in the benchmark second-price auction with the same
hard floor, and the classic revenue-equivalence result of
Myerson (1981) thus applies. The monotonicity of equi-
librium bidding (and hence the revenue equivalence)
continues to hold even when the auctioneer hides the
exact level of the soft floor before bidding, or when
bidders participate randomly.

Soft-floor advocates often point to a gap between
the winning bid and the second-highest bid in RTB
auctions and argue the auctioneer can capture some of
this gap as extra revenue using a soft floor. The symmetric
case discussed in the previous paragraph shows an
occasional random realization of a large gap by a set of
otherwise ex ante similar bidders is not a good argument
for soft floors. However, the possibility remains that the
gap is systematic, arising from the presence of bidders
whose valuation is known to be relatively high. For ex-
ample, one of the bidders bidding on a particular im-
pression may be a retargeting advertiser whose website
the customer has just visited. A soft floor might seem to

put pricing pressure on such an “asymmetrically high”
bidder while preserving revenues when he happens not
to show up at the auction. The second main result of this
paper shows that this intuition is incomplete when the
soft floor is low: the soft floor does indeed add pricing
pressure on the asymmetrically high bidders, but the
coincident bid-shading by low-valuation bidders always
more than erodes the benefits of the added pricing
pressure. The phenomenon of bid-shading shows that
even in a soft-floor auction, the pricing pressure on the
asymmetrically high bidder ultimately stems from the
presence of lower-valuation bidders, more of whom
shade their bids down when the soft floor increases. As
a result, soft floors can actually reduce expected auc-
tioneer revenue precisely in the asymmetric situation
that motivates their use in the industry.

The third main result of this paper is an example of
an asymmetric market with randomly appearing “high”
bidders, in which the auctioneer can profit from a soft
floor. Unlike in the second result, which considered the
effect of a soft floor that “kicks in” for at least some
bidders, the third result only considers soft floors high
enough to turn the auction into a 1PSB auction. Maskin
and Riley (2000) provide an example of an asymmetric
market with one stochastically dominant bidder in which
1PSB revenue dominates 2PSB. This paper extends Maskin
and Riley’s (2000) revenue-dominance result to the RTB-
relevant situation of the stochastically dominant bidder
present only occasionally and also shows the revenue
dominance can survive hard-floor optimization by the
auctioneer under some conditions: 1PSB rules can revenue-
dominate 2PSB rules as long as the high bidder’s partici-
pation probability is high enough and the asymmetry is
small enough for the auctioneer to cater to both bidders.
However, the relative revenue advantage of the 1PSB
rule is much smaller once the auctioneer optimizes hard
floors. Thus, changing the pricing rule in RTB auctions
seems likely to only lead to large revenue effects if the
hard floors are difficult to optimize for some reason. This
analysis is orthogonal to other arguments for switching
to the 1PSB rule, such as its increased transparency as
argued by Chen (2017) and Moesman (2017), who echo
the earlier analysis of Rothkopf et al. (1990).

Several directions of future research remain. One po-
tentially fruitful avenue would be to consider the direct
impact of soft floors in the model of Section 6: as the soft
floor rises toward the point when the auction turns into
a 1PSB auction for all the bidders, what happens to
the revenue advantage of the soft-floor auction over the
underlying simple second-price auction? If the revenue
advantage is decreasing, a case could be made for op-
timizing soft floors; but if it increases toward the point
when soft floors do not kick in at all, the auctioneer
would have a much simpler choice between the two
standard pricing rules.
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Soft floors are not the only proposed novel mecha-
nisms in the RTB space: for example, Celis et. al (2014)
propose a “buy-it-now or take-a-chance” mechanism to
address an irregularity in the distribution of bidders
arising from random matching with advertisers. It
would be interesting to analyze how soft floors would
perform under their assumptions because the idea of
random matching is similar in spirit to the randomly
present high bidders analyzed here. Unlike in this paper,
the bidders in Celis et. al (2014) are ex ante symmetric,
albeit coming from a mixture distribution. So one can
conjecture on the basis of Proposition 3 that soft floors
would not impact revenues under random matching as
long the mixture had a full support and implied a mono-
tonic 1PSB equilibrium bidding strategy.

Another extension could address the multiunit re-
ality of RTB marketplaces: throughout the paper, I
focused on a single auction attended by several inde-
pendent private-value bidders. However, advertisers
looking to purchase impressions on ad exchanges face
a sequence of opportunities to show their ad, and they
often view these opportunities as substitutes because
they are budget constrained. Some advocates of soft
floors correctly point out that bidding one’s full private
valuation in a sequential auction for substitutes is not
optimal (e.g., Nolet 2010, Strong 2012). Instead, one
needs to bid the valuation of winning net of the op-
portunity cost of trying again later, and the opportunity-
cost calculation needs to take into account equilibrium
considerations, because the opportunity cost depends
on the behavior and types of competing bidders (see,
e.g., Engelbrecht-Wiggans 1994, Milgrom and Weber
2000). Balseiro et al. (2015) provide a new solution
concept called “Fluid Mean Field Equilibrium” and
stationarity assumptions that together make account-
ing for multiple bidding opportunities practical. How-
ever, existing theory does not support the advocates’
leap of faith that soft-floor or 1PSB auctions somehow
resolve this issue, but rather continues to find 1PSB and
2PSB are revenue-equivalent even in sequential settings
under the symmetric model (e.g., Reiff and Schondube
2010, Chattopadhyay and Chatterjee 2012). Given these
revenue-equivalence results, one can conjecture that an
analysis analogous to Section 4 of this paper would show
soft floors have no effect on auction revenue even in
a sequential-auction model under bidder symmetry. An
interesting future direction of inquiry would examine soft
floors in sequential auctions with asymmetric bidders.

The managerial recommendations of the results pre-
sented in this paper are clear. First, soft floors should be
eliminated from ad exchanges that do not seem to have
asymmetrically high bidders. Second, low soft floors
(i.e., soft floors that kick in for regular bidders) should
be avoided, but markets with randomly appearing asym-
metrically high bidders might benefit from high soft

floors or even soft floors that never “kick in” as reserves.
Third, managers should focus on setting their hard-
floor levels correctly given the demand they face, in-
stead of worrying about switching pricing rules. Fi-
nally, managers should not worry about the “revenue
gap” between the top two bids in the second-price
auction identified by Sahni (2016). They should resist
the temptation to somehow monetize the gap and rest
easy knowing the winner needs to capture the entire
gap as his surplus to continue bidding truthfully in
dominant strategies, that is, to preserve the clear bid-
ding incentives that make the second-price rules de-
sirable. One of the most powerful implications of
Myerson’s (1981) revenue equivalence is that this stra-
tegic simplicity for bidders does not come at a cost to the
auctioneer as long as the bidders are symmetric—the
second-price auction with a correctly chosen reserve is
at least as profitable as any other auction format the
manager may wish to implement.

Appendix. Proofs Not Covered in the Main Text

Proof of Proposition 1. The proof proceeds in three steps,
establishing the following claims in turn.

Claim 1. Any monotonically increasing equilibrium bidding
function p(v) with f(M) > s must have a jump discontinuity at
the valuation level v* such that f(v*) = s, such that no bids in
the (s, v*) interval are submitted.

Claim 2. The proposed bidding strategy is a Nash equilib-
rium strategy.

Claim 3. The proposed bidding strategy is a unique Nash
equilibrium strategy.

Figure A.1. Equilibrium and Deviation Expected Surpluses
of the Focal Bidder (N = 3, F=UJ[0,1])
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Proof of Claim 1 (Jump Discontinuity). Suppose a symmetric
monotonically increasing bidding equilibrium f(v) exists such
that B(M) > s. Let v* be the valuation level such that f(v*) = s.
By construction, the v* bidder receives a positive surplus of
Pr(win)(v* — s) >0, so v* > s. Now consider bidders with v > v*,
who also bid above s by monotonicity and hence face 2PSB
pricing with a reserve of s. By the dominant-strategy
properties of 2PSB, these bidders bid their valuations,
that is, f(v) = v for all v >v*. Therefore, the bidding func-
tion B(v) must approach v* as v approaches v* from above,
resulting in the jump discontinuity:lim, _,,+p(v) = v*>s =
B(v*). By monotonicity, bidders with v > v* bid above v* and
bidders with v < v* bid below s, so no bids in the (s, v*) are
submitted.

Proof of Claim 2 (The Proposed Bidding Strategy Is a Nash-
Equilibrium Strategy). Suppose all N-1 competitors follow
the bidding strategy f(v) outlined in the proposition, and
consider a focal bidder with valuation v. It is enough to show
that bidding according to f(v) is the focal bidder’s best re-
sponse to those competitors. Three cases depend on the
magnitude of v; please see Figure A.1 for an illustration of
the three cases and all the relevant expected surpluses
for the N = 3 and F = Uniform[0,1] example with # = 0.5 and
s =0.6.

Case 1 (v <s). The bidder can bid below s and guarantee 1PSB
pricing should he win. Winning is only possible if all competitors
also bid below s, and such competitors follow ; by assumption.
Because f; is an equilibrium bidding function in 1PSB, bidding
B, (v) is the focal bidder’s best response to the relevant compe-
tition. Hence, he can make a positive expected surplus of 7;(v) =
G(v)(v - B,(v)) by bidding below s. There is only one nonlocal
deviation to consider: bidding more than s and triggering
2PSB pricing. But triggering 2PSB pricing also triggers the
soft floor as the reserve, so the focal bidder will pay at least
s upon winning, which is in turn weakly more than his
valuation. Therefore, the focal bidder cannot make a positive
payoff by bidding above s, and his overall best response to
the soft-floor auction incentives is to follow the proposed
B(v) and bid below s.

Case 2 (s <v<v*). The bidder can bid below s and guarantee
1PSB pricing should he win. The argument presented in
Case 1 shows that doing so will yield an expected surplus of
111(v) = G(v)(v - B,(v)). Also as in Case 1, this strategy domi-
nates bidding over v* because v < v*. Alternatively, the bidder
can bid in the (s,v*) interval under 2PSB rules. Because no
competitors bid in the (s,v*) interval (they follow the pro-
posed B(v) by assumption), any bid there by the focal bidder
wins whenever all the competitors bid weakly below s, that s,
with probability G(v*), and thus triggers the soft floor as the
reserve price. The alternative payoff from bidding in the (s, v*)
interval is thus 7t(v) = G(v*)(v — s).

Inow prove 7;(v) > 7t(v) for all s <v < v*; that s, f(v) = B,(v)
is the best response of the focal bidder. By construction,
the two payoffs are increasing in v and coincide at v*:
m1(v*) = T(v*). However, 7;(v) dominates 7t(v) on (s, v*) at
lower valuations because 7;(v) has a lower slope: 7j(v) =
G(v) < G(v*) = 7 (v). The slope of Tt(v) is trivial from its form
above, and the slope of 7;(v) can either be derived from

Equation (1) or obtained from the standard mechanism-
design result that the slope of equilibrium expected sur-
plus in a standard auction is the probability of winning.

Case 3 (v > v*). The bidder has three options for obtaining
a positive expected surplus:

(a) Bidding over v* triggers 2PSB pricing, and so the best
bid above v* is one’s true valuation. The expected surplus is
i(v) = G(*) (0 = 5) + [ (v = Y1)AG (Y1)

(b) As in Case 2, bidding in the (s, v*) interval results in
an expected payoff of 7(v). Bidding his true valuation as in
(a) dominates this option because my(v) — T(v) = 1) z*(v -Y7)
dG ( Yl) >0.

(c) Bidding below s triggers the 1PSB pricing rule, but the
bidder cannot bid the same amount as he would in a 1PSB,
because f,(v) >s by construction. Instead, the bidder solves
a constrained optimization problem, finding the best valua-
tion w below v* to mimic: max<*G(w)(v — B,(w)) . It is easy to
see the objective function is increasing on [0, v*]: its derivative
in the mimicked type w is D(w;v) = £ G(w)(v—B,(w)) =
g(w)(v — B,(w)) — G(w)p;(w). Because the w type is optimizing,
the first-order condition D(w;w) = 0 must hold, so g(w)(w—
B,(w)) = G(w)Bj(w). Substituting the first-order condition back
into D(w;v) yields D(w;v) = g(w)(v —w) >0. Therefore, the
optimal type to mimic is v*; that is, the optimal bid weakly
below s is s, and the expected surplus from bidding it is the
same as 7(v). As shown above in (b), this surplus is also
dominated by bidding true valuation.

In summary, the best response of the focal bidder with
v>7v* is to bid his true valuation, that is, to follow the pro-
posed B(v).

Proof of Claim 3 (Uniqueness). Now consider another mono-
tonic equilibrium bidding strategy B(v). From Claim 1 we
know B(v) must have a jump discontinuity at &* such that
B(@*) = s. Consider bidders with valuations below &* first: from
monotonicity of f(v), the bidding strategy of any bidder with
v <7* depends only on the bidding strategy of bidders with
valuations below v and hence also below @*. Therefore, all
bidders with v < 9* effectively face 1PSB incentives. It is well
known that $,(v) is the unique equilibrium bidding function
of 1PSB, so B(v) must coincide with §,(v) below 7* unless the
bidders can profitably deviate nonlocally to bid above s.
However, the above derivation of the deviation payoff 7(v) in
Case 2 holds for any monotonic bidding function such that no
bids in the (s, v*) are submitted, so it also holds for the present
p(v), and the above argument in Case 2 implies the nonlocal
deviation to bidding above s by bidders with v < o* cannot pay
off. It follows that B(v) = B,(v) forv <s,and so o* = v* = ‘Bl‘l (s).
Now consider the bidders with valuations above 7* = v*, who
either bid their valuation (as implied by the properties of 2PSB)
or deviate nonlocally below v*. Because we have established
that 5(v) must coincide with §,(v) below v*, the above argument
in Case 3 implies f(v) = v for v>v*, and so f(v) must coincide
with B(v) on the entire support of F. In other words, f(v) is the
unique symmetric Nash-equilibrium bidding strategy.
Q.E.D. Proposition 1.

Proof of Proposition 2. Consider one bidder with valuation
v and suppose all N-1 of his competitors bid according to
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some increasing bidding function f(v). The focal bidder
solves

mbax G(ﬁ’l(b)) [Q(b)(v — E[max{s, (Y1)}s<b&Y; < [a”l(b)])

Pr(win) b>s — 2PSB

+(1-Q(b))(v-">) }
s>b— 1PSB
(A1)

The E[max{s,f(Y1)}s<b& Y1 <B71(b)] term, which cap-
tures price paid whenever the bid exceeds the soft floor,
seems rather complex at first but simplifies to

E[max{s, B(Y1)}s <b& Y1 <p'(b)]
b / /b G ), 06)
G(B~ 1®) " o)
I now prove the above simplification: write the expected
payment as a double integral:

(A2)

E[max{s,f(Y1)}|s<b& Y1 <! (b)]

1

Q(s)

b 1 “1(s)
_/0 7G(ﬁ*1(b))[‘/0 sdG(Y1)+/ﬁl( BONMAG(Y) |y

(A.3)
The material in the square bracket simplifies as follows:

B(s) 71(b)
/0 sdG(Y1) + / | B,
Bl(s

= G(B1(5))s + G(B (0)b — G(B(5)s
67 (b)
- [ etvp (vaay,

B71(s)
b
= G )b - / G5 (),

where the second line follows from the first line using in-
tegration by parts and a subsequent change of variables
x = B(Y1). Plugging the simplified material into Equation (A.3)
yields Equation (A.2). In words, Equation (A.2) shows the ex-
pected payment of a winner who randomly faces a soft floor
below his bid b involves a discount below b (the inside integral),
which in turn depends on the realized s: Given Equation (A.2),
Equation (A.1) simplifies to

b b
max (g~ (0)(0 ~ b) + / / GBI ()ddQs).  (Ad)
R ———
1PSB surplus b
2PSB discount when s<b
The first-order condition of the bidding problem is
b —-b) - G
8B ())ﬁ(ﬁ 1(b))( ) (ﬁ ()?
payll’lg more in
winning more often asimple 1PSB (A5)

+ GBI (0)Q0) =0,
Ny i

larger discount when s<b

where the first two terms are the same as in a textbook solution
of a 1PSB problem, and the third term arises from the hidden
soft floor. In a symmetric equilibrium, it must be that b = f(v),
and so the equilibrium bidding function must satisfy the
differential equation in Equation (4). The differential equation
does not have a closed-form solution, but the Peano exis-
tence theorem implies a solution exists whenever the right-
hand side (RHS) of Equation (4) is contmuous in (v,p), for
which a sufficient condition is that g(y) = (N — 1)f (y)FN=2(y)
and Q(v) are continuous. Q.E.D. Proposmon 2.

Proof of Lemma 1. First consider the incentives of a regular
bidder: if the high bidders indeed bid their valuations as sug-
gested by Proposition 1, the regular bidders assume they can
only win when no high bidder is present, and so they behave the
same as in an auction without high bidders. A deviation by the
highest regular bidder v =1 to a bid above L that would compete
with the high bidders is not profitable, because it only changes
the outcome of the game when it actually beats a high bidder
and so results in a payment above L that must exceed the regular
bidder’s valuation by construction. Because the highest regular
bidder does not deviate, neither do other regular bidders.

Second, consider the incentives of a high bidder who
happens to participate and who should bid his valuation under
the proposed equilibrium. The only nontrivial deviation I
need to analyze is bidding s or below to trigger 1PSB pricing,
resulting in winning much less often but also paying less.
Given the high bidder’s valuation level, bidding exactly s is the
best such deviation from all possible bids weakly below s (see
Case 3(c) in the Proof of Proposition 1 for a mathematical
argument for why s is the best deviation from all possible bids
weakly below s). This deviation is not profitable, because it
foregoes both the positive surplus available by possibly
beating the other high bidders should they also participate and
the positive surplus available by beating high-valuation reg-
ular bidders should the other high bidder stay out:

E[surplus | bid = v] = (1 — a)*™" [v— E(price|s)|

otherhigh  win for sure, pay either
biddersout X if X;>v*, s otherwise
> 0by properties of 2PSB

+[1-(1-a) ]

atleast lother
highbidderin

E[surplus | other(s)in]

— winif present high bidder(s)
have valuations below v

>(1-a)f | FN@*)(v-s)
[ —

other high
bidders out

X <0* — s kicksin 1
>0
+ (1= FN(@*)[v - E(X31|X1 > 0*)]
X1>0* — pay X,
>(1-a)f N (v —s) =

E[surplus|bid = s|. (A.6)
In words, bidding v yields an additional expected surplus
compared with bidding (and paying) s. The additional ex-
pected surplus arises from winning more often, namely,
when the other high bidder(s) is (are) out and the highest
regular competitor is above v*, and also from the 2PSB auc-
tion that results when the other high competitor(s) is (are) in
but his (their) valuation is below v. Q.E.D. Lemma 1.
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Verification of Revenue Equivalence When Soft Floor
Is Common Knowledge and Participation Is Random
Let N = 2 in Section 4.2. The 1PSB equilibrium bidding
function is the following, easily derived by substituting
G() = (1 — a) + aF(v) in Equation (1) to account for the in-
creased probability of winning;:

(1 -a)+aF(h)
Pal®) = (1—a)+aF(v)+(1—“)+0‘F(v) /h

The auctioneer’s expected revenue depends on how many, if
any, bidders are present:

’ zdF(z).

(A7)

highest bid below soft floor — 1PSB with reserve of 1
Pr(h < X1 <v*)Ex,[B,(X1)lh < Xy <v*]+
Pr(Xy > v*)Ex,[sPr(B,(X2) <s)
+XoPr(B,(X2) > 5)| X4 > 0¥

highestbid above soft floor — 2PSB with reserve of s

h,s)= o
——

Pr(2bidders)

the only bid below soft floor — 1PSB with reserve of h

+ 2a(1 — )
Pr(h < X < v*)Ex[B,(X)|h < X <v¥]

—_——
Pr(only 1 bidder)

+ Pr(X > v*)s ,
—_———

the only bid above soft floor
— priceis the reserves

(A.8)

where X is the highest of two valuations distributed ~ 2 and
where X, is the second-highest of two valuations, and its
distribution conditional on X; = x is just F(x) the highest
of N-1 = 1 draws from F conditional on the draws being
below x. Plugging these distributions of the order statistics
into Equation (A.8), the auctioneer’s expected revenue
becomes

1109 = a [ g0
h

+a? / 1[?52;*% / jzdF(z)}sz(x)

+20(1 - a) / 7 . (ER)
h
+2a(1 — a)s[1 — F(v*)].

(A9)
Collecting terms yields

H(h ) / B,(0)(1 - a) + aF(0)|dF(x)

+ / 1 [s[(l - a)+aF(@*)] +a / zdF(z)]dF(x)-

(A.10)

Now note that ,(v*) = s, so one can substitute for s using
Equation (A.7) as follows:

S[(1 = ) + aF(@*)] = h[(1 - ) + aF(h)] + / " F()
h

Figure A.2. 1PSB Bidding Strategies with One Regular and
One Randomly Present High Bidder
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Note. Bidding functions implied by Proposition 5 for two values of M
and three values of a, with the x-axis corresponding to the support of
the high bidder’s valuations, h=0.5 throughout, and the y-axis
identical in all six subplots.

After this substitution, note the integrand in the second in-
tegral (from v* to 1) is exactly the same as the integrand in the first
(1 to v*), and so Equation (A.10) simplifies to

() = 2a [ 1 {h[(l —a)+ aF(h)] + a / ' zdF(z)}dF(x)

h
=T1(h),
(A.11)

where the last equality emphasizes that the s has no impact on
IT, because neither it nor v* are present. To see why the expected
revenue I1(%) is exactly the same as in the second-price auction
with the same reserve, rearrange Equation (A.11) as follows:

T1(h) = h{2a(1 — a)[1 - F()] + a®2F(h)[1 — F(h)]
Pr(1 bidder with v>h) Pr(2bidders with v;<h<v_;)
1
+ / 2z[1 - F(2)|dE(z),
~— h
Pr(2bidders)
Pr(Xo>h)E(Xy| Xy >h)
where the

/ " 22[1 - F@)dF(2) = Pr(Xa > hE(Xa|Xa > h)
h

because the pdf of a minimum of two draws is 2z[1 — F(z)].
This concludes the direct proof of revenue equivalence
when two randomly participating symmetric bidders are
present.

Proof of Proposition 4. Equation (6) derives the formula for

A _TT1A
the difference in profits AT1(v*) = opgp 11T (1, 5)

T It is enough to



16

Zeithammer: Soft Floors in Auctions
Management Science, Articles in Advance, pp. 1-18, © 2019 INFORMS

show AIT is positive for all v* > h and increasing in v*.
Omitting the asterisk on v for clarity, plug in the distributions
of X; and Y; in terms of F:

NAON
FN(v) FN()

_FN_;%) /h ’ xdFNl(x)]

- / " YAV (x) - F(o) / " WdEN1 ()
h h
— hFN"Y(h) (F(0) — F(h)).

ATI(v) = FN(v)|h

FN 1(h)
P~

Therefore, AIl(h) = 0. To show AIl(v) >0 and AIT(v) >0 for
v > h, it is enough to show AIT'(v) >0 for all v > h:

AIT (0) = £(0)|oNF¥ " (0) - / " dFPN ()
h

— F(©)o(N — 1)FN72(v) — hFN"Y(h)

= f(©)[oFN"(v) = (F¥"'(0)
— FN"Y(h)E(Y|h <Y1 <v) — hEN7 ()]

= f(v){ [FN"(v) = FN"Y(h)][v = E(Y1lh < Y1 <0)|

>0

+FN Y (h)(v - h)} >0,

where the last line follows from the previous expression by
adding and subtracting f(v)oFN~=!(h). Q.E.D. Proposition 4.

Details of Section 6: Expected Revenue Under the Second-
Price Rule (2PSB) in the Market with One Regular Uni-
form Bidder and One Stochastically Dominant Randomly
Appearing Bidder

The expected revenue 7y of a 2PSB auction is straightfor-
ward to derive because the bidders bid their valuations as
a dominant strategy. As a function of 1, the expected reve-
nue function is not necessarily globally concave, because any
h > 1 excludes the regular low bidder, effectively acting as
a posted price for the high bidder. The expected revenue
from such a high hard floor is 0bv10usly E(nH [h>1) = M ah(Mh)
so the optimal high hard floor is hH = 2, which exceeds 1
whenever M>2 and yields the expected revenue of
E(rur | hij) = 94 Alternatively, the seller can selectanh <1,
which engages the regular bidder. The resulting ex-
pected revenue is as follows:

Claim 4.
E(rnylh<1) = %(3]\4— 143121 + M) - 81%) + (1 — a)h(1 - h).
(A12)

Proof of Claim 4. When the high bidder does not enter, the
revenue is i(1 — h) because the low bidder wins and pays the

reserve price whenever his valuation is above the reserve
price—a probability of 1 — h. When the high bidder does
enter, four distinct revenue regions of the (v1, v2) space exist:

(1) With probability %, maxv; < h, and so the revenue is zero.

(2) With probability W, v; <h<v_;, and the reve-
nue is thus h.

(8) With probability W, h<v1<1<v,, so the high
bidder wins for sure and pays the expected conditional
valuation of the low bldder E(vq|vy>h) = 1*’1

(4) With probablhty Qachy h , h<v;<1, so the bidding com-
petition is as if two iid bldders from Uniform[/,1] exist, and
the relevant revenue is thus E(minv;|h<v;>1) = %

Combining the above four cases with the possibility of the
high bidder staying out yields Equation (A.12). This con-
cludes the proof of the Claim.

The optimal hard floor below 1, denoted hf;, optimizes the
expected revenue in Equation (A.12). The solution is in closed
form because the first-order condition of max E(mylh<1)

is quadratic. It is possible to show that h} < 1 S a<ml
M

Therefore, o> 5 is a sufficient condition for E(ry|hil) >
E(my|hk) because it implies E(my|h<1) is increasing in h on
the [0,1] interval. However, it is clearly possible for
E(ry|hiF) > E(rup|hk) even when Rk < 1—the h may only be
a local minimum.

The globally optimal hard floor hy is clearly hk or K,
depending on which leads to higher expected revenue. I now
show Iy, = It for all @ as long as M is small, namely as long as
M3 —21M? +51M - 15>0 < M <~ 2.4, above which point
i becomes globally optimal for high-enough a. To see the
condition, note first that L >12= the hard floor optimal
without the high bidder. For any 1</ <1, the difference
E(ry|h <1) — 94 decreases in a. Therefore, for a given M, the
optimal hard floor is below 1 for all « as long as E(my|hk,
a=1)>Y When a =1, hf; = 2M the associated revenue is

3 2
%, which exceeds M whenever M3 — 21M2+

4
51M —-15>0.

Proof of Proposition 5. Following Kaplan and Zamir (2012),
let v;(b) be the inverse bidding function of bidder i and look
for a pure-strategy equilibrium whence both bidders bid
inside an interval [}, b], with initial conditions v;(h) = h. The
two bidders solve the following optimization problems,
respectively:

(v1 = b)

max|«
b>h

(Uj\(/f))+l—a

(A.13)
r?g}[vl(b)](vz -b),

where the square brackets are the probabilities of winning
with a bid of b. For v; > 1, the b > I constraints are not binding,
and so first-order conditions are necessary for optimality.
The first-order conditions imply the two inverse bidding
functions must satisfy the following system of differential
equations:

v} (b)(01(b) = b) = avy(b) + M(1 - )

(A.14)
01 (b)(v2(b) = b) = v1(b).
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Multiplying both sides of the second equation by a and
adding to the first equation yields

v5(b)v1(b) + v (b)v2(b) = bv(b) + bug(b) + vi(b) + va(b)
[02(b)01 (D)) [b(v1(b)+02(b)))

+ A, where A =

M(1-a)
—

(A.15)

Integrating both sides yields the following relationship between
the two functions, up to a constant B:

2(b)v1(b) = blv1(b) + va2(b)] + bA + B. (A.16)
Because v1(h) = I, the constant B must satisfy B = —h(h + A).
Plugging this expression for B into Equation (A.16) and rear-
ranging yields v,(b) in terms of v;(b):

blv1(b) + Al = h(h + A)

va(b) = 01(b) - b

(A.17)

Finally, plug the v,(b) in Equation (A.17) into the first-order
condition of the high bidder (the second equation in 21), and
obtain a differential equation that includes only the v;(b):

o (B)(b — )b+ I+ A) = v1(b)[o1(b) — b]. (A.18)

To solve Equation (A.18), divide both sides by v2(b)(b—
W) 0(b + h + A)*? and rearrange to obtain

v;(b) b
RO -1+ + A0 or(B) b — )b + I+ AP0
1

TO-nOb+h+ AR

(A.19)
Observe that when we set 6 = ﬁ, the LHS of Equation
(A.19) can be expressed as a derivative:
0
—_——
v (b) b+[AO —h(1-206)]

2B —h)o(b+h+ AP0 ol(b)(b—h)O(b+h+ AP0

_1 A
B (Ul(b)(b —h)O(b+h+ AP0
(A.20)

The RHS of Equation (A.19) integrates, up to a constant, as

b

! d
/(b -0 +h+ A)20
_ -1 A+b
T (b-h)OPWb+h+ A0 (h(A +h)

) + const. (A.21)

Combining Equations (A.20) and (A.21) thus yields the fol-
lowing solution of the differential Equation (A.18) up to some
constant C:

(A+D)

a®) =@

+C-h b +h+ A)H’]’l. (A22)

The fact that v1(b))=1 fixes the constant to C=

1_{A4D)

T Geheans + 5O the solution becomes

01(b) = h(A +h)
1 - .
A+b+[A+h) - (A+E)](?J)6(W7+A)l_9
b-h) \b+h+A
(A23)

Because v;1(b) = 1and v2(b) = M, Equation (A.17) fixes the
upper support of bidding to b =M1 - }'Mm(zi;ff’hw.
Observe that lim,—o b = h, so lim,—o E(1t;) = h(1 — h). Q.E.D.

Proposition 5.

Proof of Lemma 2. When h < 1, the distribution G of seller
revenue 7i; is

G(x) = Pr(n; <x) = Pr(B,(v1) <x)[1 — a + aPr(B,(v2) <x)]
=01(0)[1 — a + avy(x)].

(A24)

The expected revenue then follows from G by a single in-
tegration over possible revenue levels:

Fuln<1) = [ sdcto) = - [ x1 - Geoyas

=-b(1-G@b)) +h (1-G(h) + / ' 1 - G(x)dx
0 S—— h

Pr(v;<h or high out)
b
= h[1—h(l —a+ah)] + / 1= oy()[1 = o + awa(x)]dx.
h

(A.25)
Q.E.D. Lemma 2.

Endnotes

"The use of soft floors is widespread. At least AdX, OpenX, and
AppNexus exchanges have used them in the U.S. market. When
used, they tend to affect many transactions: Yuan et al (2013) analyze
a bidding platform on which more than half of the transactions involve
a price equal to the winner’s bid, that is, an active soft floor.

2Note that randomly present high-valuation bidders are just one
possible asymmetry. This paper does not attempt to characterize the
impact of soft floors in all possible asymmetric markets, but instead
focuses on a particular asymmetry used in the industry to justify the
soft-floor practice.
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