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Abstract This paper models sequential auctioning of two perfect substitutes by
a strategic seller, who learns about demand from the first-auction price. The seller
holds the second auction only when the remaining demand is strong enough to cover
her opportunity cost. Bidding in anticipation of such a contingent future auction is
characterized, including a sufficient condition for existence of an invertible (increas-
ing symmetric pure-strategy) bidding equilibrium that facilitates the seller’s learning.
A unique invertible bidding equilibrium exists for the Dutch auction format, but only
when the second auction is sufficiently discounted by the bidders. In the equilibrium,
high-valuation bidders shade their bids down as if the second auction were guaranteed.
To counter such strategic bidding, the seller would value ex-ante commitment to hold
the second auction less often. Three forms of such commitment are analyzed: com-
mitment to list future auctions in advance, commitment to not hold the second auction
unless the first price exceeds a publicly announced threshold, and commitment to a
reserve-price in the second auction.
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1 Introduction

Unit-demand goods are frequently auctioned in a sequence of standard auctions, one
unit at a time. On eBay, dealers and individuals sell unit-demand consumer durables,
such as cars or electronics, using sequences of English auctions. Flower growers in
the Netherlands and elsewhere sell carts of flowers using sequences of Dutch auc-
tions. Finally, governments and large firms use sequences of first-price sealed-bid
auctions to sell procurement contracts—unit demand goods to capacity-constrained
firms. A seller of such goods facing persistent buyers has the opportunity to learn
about demand from the early auctions and adapt her selling strategy going forward.
For example, she may be better off not producing additional units when the remain-
ing demand is weak. To accommodate such a selling strategy, most auctioneers give
sellers the right to withdraw future lots from the auction. While clearly beneficial,
learning more about remaining demand also comes with a cost of lower revenue in the
early auctions because high-value bidders reduce their bids in response to a learning
seller. They know that losing an early auction to an even higher competitor guarantees
a high-demand signal that will entice the seller to offer another unit. Therefore, the
high-value bidders can bid conservatively in the early auctions, knowing that there will
be another chance to buy the good should they lose. This paper analyzes the resulting
tradeoff between benefits and costs of learning, and finds that the seller can profit from
various forms of commitment to reduce future supply.

A concrete example is useful to both show an application of the theory, and to
illustrate the different commitment strategies under investigation. Consider a flower
grower selling carts of the same flowers to florists, with the auction format exog-
enously fixed to a Dutch auction (as in the world’s largest Aalsmer flower-auction
house in the Netherlands). The grower has a cart of flowers to sell today, and she can
produce another cart tomorrow at some publicly known cost. When there is a unique
increasing symmetric pure-strategy bidding equilibrium in today’s auction, today’s
price reveals the valuation of the highest-valuation florist, who subsequently exits the
game because each florist only wants to buy one cart (unit-demand). The winner’s
revealed valuation is an upper bound on the valuations among the remaining bidders,
so a non-commitment grower (who makes decisions one unit at a time) will produce
and sell the second cart when her cost of producing it is less than the expected profit
implied by the upper bound on valuations. Anticipating that decision in the first auc-
tion, florists with high-enough valuations can take the second sale for granted and
bid as if there were two carts for sale. In equilibrium, these high-valuation florists
therefore bid less aggressively than in an isolated single-cart auction—a phenomenon
called bid-shading here.

Subgame perfection may force the non-commitment grower to produce and sell
the second cart of flowers even when her bid-shading revenue-loss on the first cart
exceeds the expected profits from the second cart. Under those market conditions,
the grower would clearly benefit from some form of ex-ante commitment to reduce
future production. The simplest such commitment is available to a seller who foregoes
learning completely and always lists future auctions in advance: when she does not
list a future auction, the bidders believe that there will not be one. Advance listing
can be credible when there is a third-party auctioneer who requires advance notice
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(as effectively does eBay), or when such advance notice is a necessary feature of the
market (as in procurement).1 This paper provides a general characterization of seller
preference for advance listing over non-commitment. When the distribution of valu-
ations is uniform, the problem is tractable in that a unique cost-cutoff emerges above
which the seller prefers to list in advance (keeping the number of bidders constant).
The cutoff rises with the number of bidders, so increased demand-side competition
makes advance listing less desirable.

The complete loss of learning implied by advance listing is not a necessary feature
of optimal selling when the grower can commit to second-period strategies contingent
on the first-auction price. Instead of making the decision about the second cart in
the beginning of the game, the grower may be able to announce a threshold price—
minimum first-cart price above which she will produce and sell the second cart. This
may be credible when the seller is an agent who faces piecemeal incentives: for exam-
ple, political pressure may force the government to cancel future infrastructure projects
if the inaugural project turns out to be too expensive once contractors bid on it. Alter-
natively, credibility can always be established through reputation. It is immediate that
an optimally selected threshold price will outperform both advance listing and non-
commitment: first, extremely low or high thresholds replicate profits from advance
listing. Second, a threshold slightly above the price that makes the non-commitment
seller break even in the second period outperforms non-commitment because it reduces
shading without a marginal reduction in profits. This paper analyzes the bidding strat-
egies induced by a threshold selling strategy, and finds that there is a unique increasing
first-period bidding strategy if and only if the second period payoffs are sufficiently
discounted. Therefore, informativeness of the first-period bids cannot be taken for
granted. A general characterization of the optimal threshold price is derived, together
with a closed-form result for the uniform distribution.

The threshold price strategy increases profits by convincing low-valuation florists
that they should not expect a second cart of flowers on the margin. These florists
then do not shade their bids in the first auction, in turn increasing competition for the
high-value florists who also end up bidding more thanks to Dutch-auction incentives.
Another way to convince low-valuation florists not to expect a second cart would be
to pre-commit to a reserve price for the second cart in the beginning of the game.
Credibility of a reserve price in the second period requires additional commitment,
namely commitment not to re-auction unsold units (McAfee and Vincent 1997). When
the seller does have this additional commitment, an interesting equivalence emerges:
the second-unit reserve optimal for the entire sequential-auction profit is the original
as the optimal reserve for selling only the second unit to the same group of bidders.
In other words, the incentive to reduce first-period bid-shading by raising the sec-
ond-period reserve is perfectly balanced by the incentive to accommodate the weaker
second-period demand arising from the highest bidder exiting the market in the end
of the first period.

1 On eBay, auctions are open for bidding for several days, and so the economically relevant endgame is
effectively listed several days in advance. To allow bid-preparation, government auctions of procurement
contracts for highway construction are listed at least four weeks in advance (Jofre-Bonet and Pesendorfer
2003).
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The paper is organized as follows: after a brief literature review in Sect. 2, Sect. 3
defines the model, and derives the equilibrium strategies under the baseline assumption
that second-period reserve prices are weak (production cost needs to be sunk before
the second auction, seller cannot commit not to re-auction). Section 4 then changes
these assumptions, considers commitment to a future reserve, and derives the equiva-
lence between a single-auction reserve and pre-commitment reserve in two auctions.
Section 5 concludes.

2 Related literature

It is well known that bid-shading by all bidders is the best response to an exoge-
nous future auction for a substitute (Milgrom and Weber 2000; Engelbrecht-Wiggans
1994; Jeitschko 1999; and many others). This paper extends the literature on bidding
in sequential auctions by making the existence of the second auction endogenously
determined by a strategic seller. The bidders facing a strategic seller shade their bids
only when they expect her to sell another unit after learning about demand from the
outcome of the current auction. This is different from Jeitschko (1999), who studies
an uncertain but still exogenous future sale: while all of Jeitschko’s bidders increase
their bids in response to the uncertainty, the bidders here increase their bids more when
their valuations are low. The most related paper is Zeithammer (2007) who analyzes
the relative preference for advance listings over non-commitment in a stylized case of
two patient bidders drawn from a Bernoulli distribution. Proposition 4 in this paper
generalizes his result to continuous distributions and an arbitrary number of bidders.
The strategies available to the seller are expanded to include price-thresholds and
future reserve prices. Another closely related paper is Katsenos (2007), who analyzes
a complementary model by focusing on a seller with “limited commitment” who can
commit not to re-auction unsold units but cannot commit to a future reserve-price.
He does not consider advance listing, commitment to a threshold price, or the case
when the second-unit production cost needs to be sunk before the second auction.
The present setting is also different in that the first item is sold without reserve, so
low bidders do not strategically abstain from the first auction as they do in Katsenos
(2007).

As a consequence of the strategic selling, increasing symmetric pure-strategy bid-
ding equilibria do not always exist, and so the informativeness (invertibility) of first-
period prices cannot be taken for granted. It is well known that such informativeness
breaks down when the seller can “ratchet up” the price to extract all remaining buyer
surplus (Freixas et al. 1985). Such ratcheting cannot occur in a Dutch auction for unit-
demand goods because the valuation of the second-period winner remains hidden in
the first-period bids. This logic is the unit-demand mirror image of the logic that makes
the ascending English auction preferable for sequential auctioning of goods with reju-
venating demand in Caillaud and Mezzetti (2004): their goods have identical demand
in every period, and the ascending English auction keeps the valuation of the second-
period winner (the overall highest bidder) hidden. Because of ratcheting, the present
model would completely break down if the goods were sold by ascending English or
second-price sealed-bid auctions, as explained in detail by Katsenos (2007).
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The goods considered here are durable in that bidders are persistent across
time-periods and have unit demand over time. The commitment problem of the non-
commitment seller is analogous to the commitment problem of a durable-goods
monopolist who sets prices (Coase 1972; Stokey 1979). The problem appears even
when there is only one unit to sell by auction with a reserve, because the seller will
be tempted to lower the reserve price tomorrow in case no bids exceed it today. As a
result, the ability to re-auction immediately leads to the Coase conjecture—the auction
seller cannot credibly use a reserve above her opportunity cost (McAfee and Vincent
1997). When instantaneous re-auctioning is not possible and the horizon is finite,
Skreta (2007) builds on Skreta (2006) to show that the optimal way to sell the single
unit is a sequence of auctions with declining reserves. This paper abstracts away from
the re-auctioning complications by assuming that re-auctioning is instantaneous. How-
ever, the seller still has a commitment problem because there may be more than one
unit sold, and she will be tempted to produce and sell the second unit “too often” for
overall profit maximization. The analysis contributes to the durable-goods literature by
examining a case of a seller who is initially uncertain about demand and subsequently
learns about it from the early transactions. As a result of this learning, commitment
needs to be sufficiently fine-grained (contingent on observable first-auction outcomes)
to prevail over non-commitment. With only a coarse commitment, such as that arising
from advance listings, the increased profit from learning can exceed the revenue loss
due to lack of commitment, and thus make the non-commitment seller better off. In
contrast, the canonical price-setting monopolist of Stokey (1979) faces a perfectly
known downward-sloping demand curve and always benefits from commitment not
to lower price tomorrow.

3 Model of sequential auctioning with a threshold price

There are two periods, 1 and 2. Everyone lives for both periods and discounts second-
period outcomes by factor δ < 1.

Seller. There is a monopolist risk-neutral seller endowed with one unit of a good
in the beginning of the game. In the first period, she sells the first unit in a first-price
sealed-bid auction (hereafter 1PSB) without a reserve and observes the first-period
price p1.2 In the second period, she can produce and sell one additional unit at a cost
of production c ≥ 0, where 0 is WLOG the seller’s own value of a unit.3 The market
conventions dictate that the second-period auction must be a 1PSB, possibly with a
reserve-price. The production cost c must be sunk before the second auction, so the
seller’s opportunity cost at auction time is her value (zero). In the flower-grower exam-
ple, this assumption means that the seller first produces the flowers and then offers
them for sale without having a good option to sell them in some other market. When
the seller uses a reserve price, she can instantaneously re-auction any unsold units. As

2 Either a third-party auctioneer keeps all the bids hidden and discloses only the price, or this is a Dutch
auction.
3 The cost-asymmetry between the two units simplifies the analysis by not modeling the decision whether
or not to offer the first unit. The symmetric case of constant marginal cost is considered throughout as c = 0.
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a consequence of the sunk cost and instant re-auctioning, she can credibly use only a
reserve equal to her value (zero) in either period (McAfee and Vincent 1997).4 Note
that even with these two reserve-weakening assumptions, ratcheting would lead to
valuation-obscuring mixing strategies if second-price auctions were used instead of
1PSB: if the seller knows the highest remaining bidder has valuation exactly v, then
take-it-or-leave-it offer at v is credible (Levine and Pesendorfer 1995).

Bidders. There are N ≥ 3 unit-demand patient bidders indexed by i with single-
item valuations xi drawn iidfrom some continuous distribution F on [0,1]. In the case
of durables that provide a flow of benefits in each period, “valuation” is the net present
value of the total utility derived from the good. There is no resale by the first-period
winner to remaining bidders.

Information. The seller knows F , but xi are private information of each bidder. c, δ
and N are common knowledge at the start of the game, everyone learns p1 in the end
of the first period.

Selling regimes. Three selling regimes are considered: non-commitment, advance
listing, and commitment to a first-period threshold price. The non-commitment seller
plays a Perfect Bayesian Nash Equilibrium strategy. She decides whether or not to sell
the second unit in the beginning of the second period after observing the first-period
transaction price p1. The seller who lists in advance decides her entire selling strategy
in the beginning of the game.5 The seller with commitment to a threshold price can
commit before the game to only produce and sell the second unit when p1 weakly
exceeds some cutoff level m (for “minimum”). Both commitment sellers play a Nash
equilibrium strategy.

Notation. Following Chapter 15 of Krishna (2002), let Y (m)
k be the k-th highest

of m draws drawn iid from F . Six important special cases used in this paper are:
X1 ≡ Y (N )

1 X2 ≡ Y (N )
2 X3 ≡ Y (N )

3 Y1 ≡ Y (N−1)
1 Y2 ≡ Y (N−1)

2 Z1 ≡ Y (N−2)
1 .

The distributions of the order-statistics of N − 1 “competing” bidders are denoted
Fj (x) = Pr(Y j ≤ x), with corresponding densities f j (x). The distributions of the
order-statistics of the entire population of N bidders are denoted Hj (x) = Pr(X j ≤ x),
with corresponding densitites h j (x). It is convenient to also introduce H2|1(v|x) =
Pr(X2 ≤ v|X1 = x), i.e. the conditional distribution of X2 given X1.

3.1 Bidding strategies

The game can be solved by backward induction. I restrict attention to symmetric pure-
strategy equilibria described by strictly increasing bidding strategies β1 (x) and β2 (x)

in the first and second auction respectively. It will be shown that there exists a unique
such equilibrium whenever δ is small enough.

Suppose the first-period bidding strategy β1 (x) is pure and increasing. Then, the
equilibrium second-auction bidding strategy β2 (x) is standard because the first-period

4 The assumption of cost sunk before second auction together with instant re-auctioning make reserve-prices
toothless. Section 4 investigates how changing these assumptions changes the seller’s preferred strategy.
5 The advance listing regime is revenue-equivalent to a simultaneous sale of both units via a third-price
sealed-bid auction but delaying the delivery of the second unit. Please see Sect. 3.3 for details.

123



Commitment in sequential auctioning

price does not impact second-period bids. This simplification is analogous to that in
Milgrom and Weber (2000), and it follows from mutual independence of the bidders:
the first-period price reveals an upper bound β−1

1 (p1) on the valuations of the sur-
viving bidders (i.e. the N − 1 bidders who lose the first auction), but this bound does
not bind the survivors’ optimization problem. The bound does not bind because each
bidder only considers the remaining competition at or below his own valuation, and
the revealed valuation β−1

1 (p1) of the first-period winner is by definition higher than
that of all surviving bidders. Therefore, the surviving bidders bid according to the
same function as bidders in a standard 1PSB with N − 1 IPV bidders drawn from F
(see Krishna 2002 for a detailed proof):

Lemma 1 The unique symmetric second-period bidding strategy is:

β2 (x) = 1

F N−2 (x)

x∫

0

v (N − 2) f (v)F N−3 (v) dv

= E (Z1|Z1 < x) = E (Y2|Y1 = x) = E (X3|X2 = x)

Unlike β2 (x), first-period bidding depends on the seller’s strategy. Because both non-
commitment and advance listing correspond to special cases of a price-threshold, the
following proposition characterizes bidding in all selling regimes (see the Appendix
for all proofs):

Proposition 1 Let m ∈ [0, E (Y1)] be the seller’s threshold price, and let w be the bid-
der who would bid m in the absence of the second auction: m = E (Y1|Y1 < w). When
it is increasing, the following β1 (x) is the unique increasing symmetric pure-strategy
equilibrium:

β1 (x) = E (Y1|Y1 < x) − δ Pr (w < Y1|Y1 < x) E (Y1 − Y2|w < Y1 < x)

When β1 (x) is not increasing, there is no non-decreasing symmetric pure-strategy
equilibrium.

A key property of β1 (x) is that bidders below w bid as if there were no second auc-
tion while bidders above w bid as if the second auction were guaranteed. The reason
for the different expectations is that bidders correctly anticipate the seller’s decision
should they lose. When x > w, it is obvious that losing means that p1 > m because
losing means Y1 > x and x > w. In contrast, a bidder with x < w will only get to
bid in the second auction when Y1 > w. Local deviations above β1 (x) (slightly above
β1 (x) but still below m) do not change the chance that Y1 > w, and so low-value
bidders do not consider the second-auction on the margin. Proposition 1 is surprising
in that threshold-crossing deviations are not profitable either: even bidders slightly
below w do not find it beneficial to increase their bids in order to ensure the existence
of the second auction. Such a deviation would only change the existence of the second
auction if the bidder were pivotal to the outcome of the first auction, i.e. losing with
the equilibrium bid but winning thanks to the deviation. But since winning the first
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auction rules out participation in the second, being pivotal implies that the deviation
is not profitable.

Given that only bidders above w shade their bids, it is possible to develop intui-
tion for the shading decrement below the single-shot 1PSB strategy of E (Y1|Y1 < x):
in a first-price sealed-bid auction, it is optimal to bid the expected valuation of the
highest competitor conditional on winning the auction (Krishna 2002). A guaranteed
existence of a future auction effectively reduces the valuation of the first unit by the
opportunity cost of not winning the second unit—the discounted expected surplus
δ [x − β2 (x)]. Therefore, the valuation of the highest competing bidder net of the
potential second-period auction is Y1 − 1 (Y1 > w) δ [Y1 − β2 (Y1)], from which the
formula for β1 (x) in Proposition 1 follows. One could therefore consider β1 (x) to
be an obvious candidate for the equilibrium bidding function. Proposition 1 confirms
that this intuition indeed works by ruling out all possible deviations and establishing
uniqueness.

The advance-listing and non-commitment special cases are as follows: When the
seller lists in advance, no second sale (w = 1, hereafter calledrationing) obviously
yields standard 1PSB bidding β0

1 (x) = E (Y1|Y1 < x). Conversely, a guaranteed sec-
ond sale (w = 0) yields the bid-shading strategy as in Milgrom and Weber (2000), but
modified for discounting:

β1
1 (x) = δβMW

1 (x) + (1 − δ) β0
1 (x) = E (Y1|Y1 < x) − δE (Y1 − Y2|Y1 < x)

where βMW
1 (x) = E (Y2|Y1 < x) is the original Milgrom and Weber strategy.

A non-commitment seller cannot pre-commit to an arbitrary w, and is instead bound
by subgame perfection to select the breakeven w0 that is implicitly defined by:

c = E (X3|X1 = w0) = 1

F N−1 (w0)

w0∫

0

β2 (v) dF N−1 (v).

Example When F is a power distribution parametrized by t > 0 as F (x) = xt ,

β2 (x) = (N − 2) t

1 + (N − 2) t
x,

β1 (x) = (N − 1) t

1 + (N − 1) t
x

[
1 − 1 (x > w) δ

x1+(N−1)t − w1+(N−1)t

[1 + (N − 2) t] x1+(N−1)t

]
,

and

w0 = [1 + (N − 2) t] [1 + (N − 1) t]

(N − 2) (N − 1) t2 c.
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Fig. 1 First-period bidding strategies (uniform example). The equilibrium first-period bidding strategy
β1(x) is shown for the case of the Uniform distribution, N = 4 bidders, δ = 3/4 discount factor, and
w = 2/3. The two strategies of the seller who lists in advance are also shown: the dashed line marked with
circles shows the strategy when the seller rations, and the lowest solid line shows the strategy when the
seller sells again for sure

When t = 1, F is the uniform distribution, and the functions simplify to

β2 (x) = N − 2

N − 1
x, β1 (x) = x

N

[
N − 1 − 1 (x > w) δ

x N − wN

x N

]
,

β0
1 (x) = x

N
(N − 1) > β1

1 (x) = x

N
(N − 1 − δ) ,

and

w0 = cN

N − 2
.

Please see Fig. 1 for an illustration.

One surprising aspect of Proposition 1 is that the existence of an invertible equilib-
rium is not guaranteed. Discounting of the second auction turns out to be necessary
for existence:

Corollary 1 When δ = 1, there does not exist an increasing symmetric pure-strategy
equilibrium for any w ∈ (0, 1). For the equilibrium to exist, δ needs to be small-
enough. In the power-distribution example, “small enough” δ is δ <

1+(N−2)t
1+(N−1)t .

To prove the corollary, differentiate the candidate function β1 (x). When w ∈ {0, 1},
the slope of β1 (x) is guaranteed to be positive. But when 0 < w < 1, there is a kink
at w in that β1 (x) becomes flatter at that point:

dβ1

dx

∣∣∣∣
x �=w

= f1 (x)

F1 (x)
[x − β1 (x) − 1 (x > w) δ (x − β2 (x))]

123



R. Zeithammer

The reason for the kink is that marginal incentives change at w: below w, the mar-
ginal surplus of a winner with valuation x is just the 1PSB surplus x −β0

1 (x). Above w,
however, winning means not participating in the second auction, and so the marginal
surplus is x −β1(x)−δ(x − β2(x)). The kink at w implies that the candidate function
for β1(x) is not increasing for high δ. When δ = 1, the right-hand slope at w simplifies
to:

lim
x→w+

dβ1

dx
= f1(w)

F1(w)

[
β2(w) − β0

1 (w)
]

< 0.

This limiting slope is negative despite the fact that the derivative of β1
1 (x) has a

very similar form and is always positive:

dβ1
1

dx
= f1(x)

F1(x)

[
β2(x) − β1

1 (x)
]

> 0 for all x .

The reason for the different right-hand slopes of β1(x) and β1
1 (x) at w is the fact that

under β1(x), low-value bidders with x < w do not shade their bids below 1PSB levels,
and so the equilibrium bid at w is too high for β1(x) to keep increasing above w when
the second auction becomes a consideration and the incentives to shade “kick in”. Spe-
cifically, δ = 1 sorts the three key bidding strategies as follows: β1(w) = β0

1 (w) =
E (Y1|Y1 < w) > β2(w) = E (Z1|Z1 < w) > β1

1 (w) = E (β2 (Y1) |Y1 < w).
It is not clear what happens when δ = 1, but Proposition 1 shows that there cannot

be a weakly increasing equilibrium with partial pooling at m, see the proof for details.

3.2 Seller profits

It is enough to evaluate the total expected seller profits under the price-threshold
regime. The total expected profit is the profit from the first auction plus the profit from
the second auction whenever X1 > w. Thanks to the mutual independence of the
bidders, the total expected profit can be expressed neatly in terms of order-statistics,
as demonstrated by Proposition 2:

Proposition 2 When the second unit is sold whenever β−1
1 (p1) > w, total expected

profits are:

�(w) = �(0) + δ {Pr (X2 < w) E (X2 − X3|X2 < w)

− Pr (X1 < w) E (X3 − c|X1 < w)}

where �(0) = �(1)+δ [2E (X3) − E (X2) − c] is the expected profit of the advance-
listing seller committed to hold the second auction, and where �(1) = E (X2) is the
expected profit of the advance-listing seller who rations.
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The first term in the curly brackets is the expected shading-reduction due to w > 0,
and the second term are the foregone second-period profits. Note that δ factors out of
the curly bracket because expected shading is proportional to δ. Therefore, the seller
strategy does not depend on δ (as long as δ is small-enough to make β1 (x) increas-
ing). Also note that E (X2) is the baseline revenue in a standard 1PSB auction, which
follows most easily by revenue equivalence of standard 1PSB with the second-price
sealed-bid auction.

3.3 Seller strategy: seller who lists in advance

The simplest selling regime to discuss is the seller who lists in advance, i.e. the seller
restricted to w ∈ {0, 1}. Her optimal strategy is obvious from Proposition 2: she holds
the second auction whenever 2E (X3) − E (X2) > c and receives �(0), otherwise
she rations the good and receives �(1). Note that compared to myopic 1PSB bidding,
the first-period revenue when the seller lists the second unit in advance is reduced by
δ [E (X2) − E (X3)] because of bid-shading. The bid-shading makes rationing more
attractive than myopic bidding would, especially when the demand-side competition
is low.

In the uniform example, the expectations of relevant order-statistics have a very
simple form:

E (X2) = N − 1

N + 1
and E (X3) = N − 2

N + 1
.

Therefore, the profit function simplifies to:

�(0) = N − 1

N + 1
+ δ

(
N − 3

N + 1
− c

)
,

where the part in parentheses combines the additional second-period profit

δ
(

N−2
N+1 − c

)
with the profit-reduction due to shading of δ

N+1 . The seller thus prefers

to ration whenever cost is high-enough, and there is always a region of the parameter-
space, in which rationing is preferred to selling two units, namely c > N−3

N+1 (line
MaxCommit in Fig. 2). The above claim that bid-shading makes rationing more attrac-
tive than myopic bidding would can be illustrated as follows: when N = 3, a seller
facing c > 0 will always ration, whereas the same seller would sometimes want to
sell two units if bid-shading did not occur.

The advance listing regime is revenue-equivalent with allocating the two units via a
single multi-unit auction. The natural auction to use would be a third-price sealed-bid
auction:

Proposition 3 Suppose the seller uses a third-price sealed-bid auction to decide the
allocation of both units in the first period, with the delivery of the second unit to
the runner-up delayed until the second period. Then, the seller makes �(0), and the
bidders follow a unique symmetric pure-strategy Nash equilibrium with a bidding
function
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Fig. 2 Value of listing in advance relative to non-commitment (uniform example). The optimal non-
commitment strategy is shown in ovals, optimal advance-listing strategy is shown in rectangles. Line
MaxLearnis the maximum feasible cost of the second unit given first-period price, i.e. (N − 2)/N . Line
MaxCommitis the exante maximum feasible cost of the second unit, i.e. (N − 3)/(N + 1). The shaded
region is the region in which the non-commitment seller would strictly prefer listing in advance. The
lower boundary of the shaded region is c ∗ (N ) of Corollary 2. The thin dashed line marked with trian-
gles is the analytical upper bound for c ∗ (N ) of Corollary 2, i.e. (N − 3)/(N − 1). The lines do not
depend on δ

β̄ (x) = δx + (1 − δ) x F (x)

(N − 2) [1 − F (x)]
.

Because the runner up does not receive his full valuation at auction time, bidders
do not have a dominant strategy to bid their valuations as they would in a canonical
Vickrey auction. For the same reason, the standard multi-unit revenue-equivalence
result of Maskin and Riley (1989) does not apply either. Therefore, I prove this reve-
nue equivalence directly, exposing an interesting bidding equilibrium in the process.
For every δ < 1, β̄ (x) is a peculiar bidding function for atleast two reasons: First,

high bidders x such that F(x)
1−F(x)

> N − 2 bid more than their valuations. Second,

β̄ (x) approaches infinity as x approaches the top of the valuation support. It is inter-
esting how even a slight delay in delivery of the second unit completely changes
the bidding incentives. Given the peculiarity of the bidding strategy, the third-price
sealed-bid auction is not a practical way to sell the two units when the delivery of
the second unit needs to be delayed due to production constraints assumed in this
paper.
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3.4 Seller strategy: non-commitment seller

The learning ability of the non-commitment seller makes her expected second-period
profit positive, while also implying a cutoff w0 > 0, which in turn implies a reduc-
tion in bid-shading in the first period relative to holding the second auction for sure.
Therefore, the non-commitment seller always makes more than �(0). However, the
non-commitment seller does not always outperform the seller who lists in advance
because it is possible that �(w0) < � (1). While the expected non-commitment sec-
ond-period profit is guaranteed to be positive, it may not compensate for first-period
bid-shading. The following Proposition 4 characterizes when the non-commitment
seller would find advance listing valuable:

Proposition 4 (Value of advance listing): The non-commitment seller would prefer
commitment to advance listing whenever the bid-shading she faces in the first period
exceeds the additional profit she expects to earn in the second period. This happens
when

E (X2 − X3|X2 > w0) > E (X3|X2 > w0) − E (X3|X2 < w0)

In the uniform example, value of advance listing can be related explicitly to the parame-
ters of the model because the formulae in Proposition 4 take on a neat form. It is obvious
that the seller with N > 3 and c = 0 does not find advance listing valuable: she makes

a second-period profit of δ
(

N−2
N+1

)
at the cost of only δ

N+1 in added bid-shading. As the

cost increases to the maximum feasible cost N−2
N (line MaxLearn in Fig. 2, i.e. cost

such that w0 = 1), both the additional profit and the additional bid-shading decrease
all to way to zero—at which point the seller receives �(1). Since both components of
the additional profit decrease to zero, it is not immediately clear whether the shading
decrement ever exceeds the additional profit for intermediate costs. The following
Corollary 2 shows that this indeed happens, and it happens for high costs:

Corollary 2 When F is Uniform [0,1], then for all N ≥ 3, there is a c∗ (N ) ≤ N−3
N−1

such that the non-commitment seller would strictly prefer to list in advance for every
cost c such that c∗ (N ) < c < N−2

N . c∗ (N ) increases in N.

Corollary 2 is illustrated in Fig. 2. The fact that c∗(N ) increases in N means that
increased demand-side competition reduces the usefulness of advance listing rela-
tive to non-commitment selling. One way to interpret this result is as follows: higher
demand competition makes the second period more lucrative, so the non-commitment
seller sells again more often (w0 decreases in N ). Therefore, more bidders shade their
bids, and so it may seem that the seller would be more interested in commitment to list
in advance. However, the increased competition also reduces expected bidder surplus
that drives bid-shading, and so the bidders shade by less. Corollary 2 shows that the
second effect dominates the first, at least when F is uniform.
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3.5 Seller strategy: seller with commitment to threshold price

The seller who can commit to any w solves the problem maxw∈[0,1] �(w). As dis-
cussed above, this decision does not depend on δ. From Proposition 2, the first-order
condition is:

h2 (w) [w − β2 (w)] = h1 (w)

w∫

0

[β2 (v) − c] h2|1 (v|w) dv (FOC)

The LHS of the FOC is the marginal reduction in expected bid-shading, i.e. the bid-
shading decrement of the bidder of type w. The RHS is the marginal increase in
second-period profit, i.e. the expected profit β2 (X2) − c given that X1 = w. Loosely
speaking, the FOC equates the marginal surplus to the bidders in the second auction
with the marginal profit to the seller. The seller cares about the marginal second-auction
surplus of the bidders because it enters first-period profits through bid-shading.

Solving the problem in general is difficult because the LHS margin is weighted
by the pdf of X2 while the RHS margin is weighted by the pdf of X1. However, it
is easy to see that w∗ always exceeds w0 because the RHS of the FOC is zero when
w = w0 and increasing above w = w0. Therefore, whenever there exists a monotone
pure-strategy equilibrium characterized in Proposition 1, commitment to threshold
price strictly dominates non-commitment. Compared to the nuanced result of Prop-
osition 4, the principle of commitment in dynamic games is thus restored when the
commitment strategy is contingent on the observable first-auction outcome.

A general characterization of the optimal type-threshold w∗ is not feasible in closed
form, but the uniform example yields a closed-form solution: When F is Uniform[0,1],

h2|1 (v|w) = (N − 1) vN−2

wN−1 ,

and so

w∗ = N (1 + c)

2 (N − 1)

which in turn corresponds to the cutoff price of

m∗ = β0
1

(
w∗) = 1 + c

2
.

Figure 1 shows the w∗ for the N = 4 and c = 0 case, along with the associated
β1 (x). The surprising aspect of the uniform example is that m∗ does not depend on
N and corresponds exactly to the optimal reserve price in a single-shot 1PSB auction
for the second unit, but with the cost c not sunk until after the second auction. This
match suggests that the two mechanisms may be equivalent on some level. The next
section investigates this possibility, and shows that the above exact correspondence is
a coincidence, and the two mechanisms are not equivalent.
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4 Commitment to a future reserve price

In the threshold-price equilibrium, the highest bidder X1 always receives a unit of
the good, but the second-highest bidder X2 is excluded from trading whenever X1 is
low (whenX1 < w∗). The same exclusion could be accomplished by using a reserve
price in the first period, and only producing the second unit if the first unit sells. If
not (if no bids exceeded reserve), the first unit would be resold in the second period
without a reserve. This mechanism would be less efficient than the threshold-price
mechanism because it would delay the delivery of the unit to the highest bidder X1.
Moreover, Katsenos (2007) shows that bidding would be very complicated due to
strategic abstentions of low-valuation bidders from the first auction.

Yet another way to exclude X2 from trading is to use a second-period reserve price.
The assumptions of Sect. 3 made second-period reserve prices weak by timing the
production cost c before the second auction, and by allowing the seller to instanta-
neously re-auction unsold units. Suppose instead that the cost does not have to be sunk
until after the auction. In the flower-grower example, this cost-structure would arise if
the grower only sold a promise to grow flowers after the second auction.6 In addition,
suppose the seller can credibly commit not to re-auction the second unit. To keep
the amount of (inter-temporal) commitment the same as in the threshold-price case,
suppose the seller can commit to any second-period reserve in the beginning of the
game. It can be shown that under this alternative selling regime, a unique increasing
symmetric pure-strategy equilibrium exists for all parameter values and all reserves.
Interestingly, the optimal reserve to use turns out to be exactly the same as the reserve
optimal for selling the second unit in isolation:

Proposition 5 Suppose there are N ≥ 3 unit-demand bidders drawn iid from distri-
bution F, such that x − 1−F(x)

f (x)
is increasing in x. The seller sells one unit without a

reserve, and pre-commits to a reserve price r for a second unit sold in a future auction
discounted by factor δ. The seller’s opportunity cost of the second unit at the time of
the future auction is c. For every cost c ≥ 0 and number of bidders N ≥ 3, the r
optimal for selling both units sequentially is the same as the optimal reserve price for
selling only the second unit to the original group of bidders, namely r∗ such that

r∗ = c + 1 − F (r∗)
f (r∗)

.

Two opposing forces act on the optimal reserve: increasing the second-period
reserve obviously reduces bid-shading in the first period, so one might expect that
the optimal second-period reserve for selling two units sequentially would be higher
than the optimal reserve for selling the second unit in isolation. On the other hand, the
first-unit sale also depletes the distribution of bidders by removing the highest one, and

6 Another context with the cost not sunk until after the auction would be a seller endowed with two units
and diminishing marginal utility: if I have two identical bicycles but I only ride one to work, I can sell one
on eBay without reserve because it is worthless to me. If I get a really high price, I may want to sell my
remaining bicycle as well, but my value of it is higher than that of my second bicycle.
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so the optimal reserve for the second-unit sale may actually be lower to accommodate
the weaker demand. Proposition 5 shows that these two forces exactly cancel out.

It is possible to prove Proposition 5 by first deriving the equilibrium bidding strategy
and then maximizing the implied seller profit. Instead, I use a direct proof that analyzes
the equivalent direct revelation mechanism.7 The result extends earlier results from the
mechanism design literature: Maskin and Riley (1989) showed that the optimal direct
revelation mechanism for selling many units to unit-demand bidders involves the same
optimal reserve r∗ for every unit as the direct revelation mechanism for selling just
one unit in isolation. One implementation of the multi-unit optimal mechanism is a
sequence of standard auctions which allhave a reserve of r∗. Proposition 5 confirms
that r∗ is ex-ante optimal for the second unit even when there is no first-period reserve.

A general revenue comparison of commitment to threshold price and commitment
to a second-period reserve is beyond the scope of this paper. In the Uniform example,
it can be shown that the second-period reserve revenue-dominates the threshold price,
and it can also be shown that the commitment not to re-auction is necessary for this
dominance. Therefore, even when the grower from the Introduction is only selling a
promise to grow flowers after the second auction, she is better off with an optimal
first-period price-threshold than with a second-period reserve set at the production
cost. Finally, the m∗ (c|N ) = r∗ (c) equality found in Sect. 3.4 for the Uniform case
is a coincidence, because it does not hold in the more general power-distribution case
F (x) = xt (see Appendix for details of this example).

5 Discussion

An auction seller with the ability to procure additional units of a durable good in the
future has a commitment problem because high-value buyers anticipate that should
they lose today, the seller will find it profitable to produce and sell another unit.
The high-value buyers therefore shade their bids down as if the future auction were
guaranteed, reducing the seller’s revenue from the current auction. Analogously to a
durable-goods monopolist who sets prices, the seller may find it beneficial to credibly
announce that she will not sell another unit in the future. However, this posted-price
market intuition is not complete because a canonical auction seller starts out uncertain
about demand and has a natural ability to learn about demand from the outcomes of
early auctions. Therefore, the auction seller may want to make future auctions con-
tingent on the outcome of the current auction. This paper presents a model of a seller
who makes the future auction contingent on today’s price reaching a threshold.

A key technical contribution of this paper is a general analysis of the bidding strat-
egy induced by a price threshold. No invertible (increasing symmetric pure-strategy)
equilibria exist for the sequential second-price sealed-bid auction because of ratchet-
ing: the auction would reveal the valuation of the highest surviving bidder, and the
seller would exploit that bidder by setting the second-period reserve-price equal to
that valuation. An invertible bidding equilibrium does exist for the Dutch auction
(i.e. a first-price sealed-bid auction with only the price revealed), but only when the

7 I thank an anonymous referee for suggesting the direct proof.
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second auction is sufficiently discounted by the bidders, for example when it is delayed.
When it exists, the first-period bidding strategy is qualitatively different for low and
high bidders: the low bidders bid as if there were no chance of a future auction, while
the high bidders bid as is the future auction were guaranteed. Because of this differ-
ence, the equilibrium bidding strategy has a kink in that it becomes locally flatter as it
exceeds the threshold price. When the second auction occurs instantaneously after the
first auction, no informative equilibrium exists even for the Dutch auction, nor does an
equilibrium with partial pooling. A mixed-strategy equilibrium occurs, and the seller
thus cannot interpret the price as the bid of the highest bidder.

When an informative equilibrium does not exist, or when the commitment needed
for the credibility of an arbitrary threshold price is not available, the seller may be
able to ration the good, i.e. commit not to sell the future unit under any circumstances.
Commitment to ration may be more realistic as it is naturally available to all sellers
in markets that require advance listing of future auctions. By rationing the good, the
seller concentrates the demand-side competition in the first auction but foregoes the
future revenue completely. When she lists a future auction, she suffers from first-
period bid-shading by all bidders but gets the future profit (which may actually be
negative if her opportunity cost is high). Either way, and regardless of discounting,
there exists a unique symmetric pure-strategy bidding equilibrium. When the future
auction is delayed, the simple bidding equilibrium in the sequential auction for two
units contrasts with relatively non-intuitive strategies that would arise if the seller
wanted to allocate both units through the revenue-equivalent third-price sealed-bid
auction (Proposition 3).

Schelling’s commitment principle in dynamic games implies that commitment to
a threshold price always dominates non-commitment. In contrast, commitment to
advance listing is too coarse to always outperform non-commitment. A key question
thus arises: when would a seller prefer advance listing (no learning) to non-commitment
(with learning)? The regime preference between advance listing and non-commitment
boils down a production decision at the margin, and so it is natural for the seller to
consider marginal revenue versus marginal cost. One contribution of this paper is to
highlight the composition of these marginals: First, because the bidders are strate-
gic and forward-looking, the correct marginal revenue to consider must be net of the
reduction in first-period revenue due to bid-shading. Second, the correct marginal cost
is the cost of production minus the information rent from non-commitment’s better-
informed production decision. The indifference condition of the seller can be written
in terms of conditional order-statistics (Proposition 4), and analyzed explicitly under
the uniform distributional assumption (Corollary 2). An interesting result emerges
in the uniform special case: advance listing is preferred when the cost is high and
demand weak in the sense of a small number of bidders. As the demand strengthens,
advance listing is less and less useful. The reason for the latter effect is that increased
demand-side competition reduces the bidder surplus from the second auction, in turn
reducing the incentive to shade early bids in a non-commitment auction.

While the main focus of this paper is the threshold-price model, I also considered
two other forms of intertemporal commitment to a contingent future strategy. First,
the seller could use a reserve price in the first period, re-auction the first unit if no
bids exceed it, and only produce the second unit if the first unit sells. This mechanism
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would allocate the unit(s) to exactly the same bidder(s) as the threshold price, but the
delivery of the first unit to the highest bidder would sometimes be delayed until the
second period. Because of the same allocation but the additional delay, it is unlikely
that the seller could make a higher profit through this mechanism. Another way the
seller could reduce future supply would be to pre-commit to a future reserve price.
This mechanism would work well if the seller could commit not to re-auction unsold
units. The optimal reserve price to use is surprisingly easy to characterize: it is the
same reserve the seller would use to auction only the second unit in isolation (Prop-
osition 5). Therefore, unlike the optimal threshold price, the optimal future reserve
does not depend on the number of bidders. The seller’s relative preference between the
two contingent strategies depends on the timing of production costs: the first-period
threshold can always consider the second-period production cost on the margin, while
a second-period reserve can only consider it if it is not sunk before the second auction.
As a result, first-period threshold-prices can dominate second-period reserves in terms
of overall profit.

Appendix: Proofs of propositions

Proof of Proposition 1 For any function β1 (x) to constitute a symmetric-equilibrium
bidding function, there must be no profitable deviations from β1 (x) for any x ∈ [0, 1].
This proof first uses necessary first-order conditions for x �= w to derive a unique
continuous candidate function, confirms that the candidate function offers no prof-
itable deviations to any x ∈ [0, 1], and shows that continuity at w is necessary for
equilibrium.

Suppose β1 (x) is strictly increasing so first-period bids have the same ordering as
valuations. It is helpful to introduce notation B (x) for “baseline” ex-ante expected
surplus from the second auction: B (x) > 0 because the following three events can
co-occur for every x : (1) Y1 > x and x thus loses the first auction (2) Y1 ≥ w and
so the second auction is offered by the seller (3) Y2 < x and so x wins the second
auction. B (x) captures the resulting expected surplus:

B (x) ≡ δ Pr [Y1 > max (w, x) & Y2 < x] [x − β2 (x)]

= δ (N − 1) [1 − F (max (w, x))] F N−2 (x) [x − β2 (x)]

= δ (N − 1) [1 − F (max (w, x))]

x∫

0

F N−2 (v) dv

The first equality evaluates the joint probability of (1) to (3), i.e. the probability that
there is one competing bidder above max (w, x) and N − 2 competing bidders below
x (noting that the highest competing bidder can be selected N − 1 different ways).
The third equality follows from Lemma 1 and integration by parts, which together
imply F N−2 (x) [x − β2 (x)] = ∫ x

0 F N−2 (v) dv. The latter is a familiar result: the
expected surplus at the start of an IPV sealed-bid auction is the integrated probability
of winning the auction. Hereafter, I denote S2 (x) ≡ ∫ x

0 F N−2 (v) dv.
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Consider a bidder with x �= w who bids β1 (z) instead of β1 (x), but only deviates
locally in that |z − x | < |w − x |. There are two cases:

Case 1 For x < w, the local profit function is the same as that in a 1PSB except there
is the second-period surplus B (x):

�(z|x, z < w) = [x − β1 (z)] F1 (z) + B (x) .

Since B (x) is constant in z, the local maximum of � must satisfy the same first-
order condition (FOC) as a standard bidding strategy in a single 1PSB:

dβ1(z)F1(z)

dz
= x f1(z).

Symmetry of the equilibrium then implies that the FOC must hold with x = z so
that type x finds it locally optimal to bid β1 (x). Therefore, for x < w, the β1 (x) must
satisfy the differential equation

dβ1 (x) F1 (x)

dx
= x f1 (x)

with the initial condition β1 (0) = 0.

Case 2 For x > w, the profit function is the same as in Milgrom and Weber (2000)
except that the second-period surplus is discounted. There are two sub-cases depending
on the direction of the local deviation from x :

�(z|x, w < x < z) = [x − β1 (z)] F1 (z) − δ [F (z) − F (x)]

× [x − β2 (x)] (N − 1) F N−2 (x) + B (x)

� (z|x, w < z < x) = [x − β1 (z)] F1 (z) + δ

x∫

z

[x − β2 (y1)] f1 (y1) dy1 + B (x)

where z < x deviation is more involved because losing to y1 ∈ (z, x) implies that
it is optimal to bid only β2 (y1) < β2 (x) in the second period (see Krishna 2002).
The FOC in each subcase coincide at z = x and imply the differential equation
dβ1(x)F1(x)

dx = [x (1 − δ) + δβ2 (x)] f1 (x).

The above FOC determine the slopes of any candidate β1 (x) at x �= w, i.e. the
slope of any β1 (x) that offers no local deviations at x �= w. It is immediate from the
FOC that any candidate must be continuous and differentiable at x �= w. Moreover,
there is a unique way to connect the x < w and x > w regions to achieve continuity
at w, namely using limx→w− β1 (x |x < w) as the initial condition for the differential
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equation describing the x > w region:

β1 (x) = 1

F1 (x)

x∫

0

[v − δ1 (v > w) (v − β2 (v))] dF1 (v)

= 1

F1 (x)

x∫

0

vdF1 (v) − 1 (x > w)
δ (N − 1)

F1 (x)

x∫

w

S2 (v) f (v) dv

= E [Y1|Y1 < x] − δ Pr (w < Y1|Y1 < x) E [Y1 − Y2|w < Y1 < x]

where the second equation follows from S2 (x) = F N−2 (x) [x − β2 (x)], and the
third equation follows from multiplying and dividing the second equation by
Pr (w < Y1 < x).

I now show that β1 (x) offers no deviations β1 (z) to any bidder x ∈ [0, 1]. There
are six different orderings of x, z, and w. The cases z < x ≤ w and x < z < w

are the same as in standard 1PSB (see Krishna, p. 18). The cases w ≤ x < z and
w ≤ z < x are straightforward generalizations of the Milgrom and Weber result,
and I include them here for intuition, completeness, and as building-blocks for the
subsequent evaluation of threshold-crossing deviations:

�(z|x, w ≤ x < z)

= x F1 (z) −
z∫

0

vdF1 (v) + δ (N − 1)

z∫

w

S2 (v) dF (v)

− δ (N − 1) S2 (x)

z∫

x

dF (v) + B (x)

⇒ �(x |x, w ≤ x < z) − �(z|x, w ≤ x < z)

= δ (N − 1)

z∫

x

⎡
⎣(v − x) F N−2 (v) −

v∫

x

F N−2 (y) dy

⎤
⎦ dF (v) ≥ 0

The intuition behind the result is as follows: in a single-shot 1PSB,

�(z|x) = x F1 (z) −
z∫

0

vdF1 (v),

which is maximized at z = x . From the the first two terms of the first line, it is thus
evident that by bidding β1 (z) > β1 (x), the bidder loses as if by bidding too much
in a single-shot 1PSB. At the same time, he also gets a net gain because the addi-
tional expected price-reduction due to bid-shading (third term) exceeds the foregone
expected continuation payoff (fourth term). As the last-line shows, however, the net
gain will always be smaller than the loss from overbidding in a single-shot 1PSB. The
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case of w ≤ z < x is analogous, with the intuition reversed:

�(z|x, w ≤ z < x) = x F1 (z) −
z∫

0

vdF1 (v) + δ (N − 1)

z∫

w

S2 (v) dF (v)

+ δ

x∫

z

[x − β2 (v)] dF1 (v) + B (x)

⇒ �(x |x, w ≤ z < x) − �(z|x, w ≤ z < x)

= (1 − δ)

x∫

z

(x − v) dF1 (v) ≥ 0

The remaining two cases treat the threshold-crossing deviations, namely x < w ≤ z
and z < w ≤ x . �(z|x, x < w ≤ z) is the same as �(z|x, w ≤ x < z) except that
the last integral (the fourth term) is from w to z instead from x to z : the continua-
tion payoff is only available if the highest opponent is above w. The net profit from
deviation to β1 (z) decomposes as follows:

�(x |x, x < w ≤ z) − �(z|x, x < w ≤ z)

= [�(w|x = w < z) − �(z|x = w < z)] +
w∫

x

(v − x) dF1 (v) ≥ 0

where the part in brackets was shown to be positive above (in the w ≤ x < z case), and
the remaining integral is just �(x |x < w) − �(w|x < w) in the single-shot 1PSB
case. Intuitively, a threshold-crossing deviation from x < w to z > w yields the same
profit as the same deviation would to a bidder with w = x minus the additional loss
from overbidding in the first auction.

Finally, the z < w ≤ x deviation is also not profitable because the deviation to
z = w is not profitable by above argument in the w ≤ z < x case, and further
reduction in z below w yields the same net surplus as bidder with x = w deviating to
z < w:

�(x |x, z < w < x) − �(z|x, z < w < x)

= [�(x |w < x) − �(w|w < x)] +
w∫

z

(x − v) dF1 (v) ≥ 0

It remains to be shown that continuity of β1 (x) at w is necessary for equilib-
rium. Suppose not, and suppose there is a jump J > 0 such that β̃1 (x) = β1 (x) +
δ1 (x > w) J . Then, there is a type w + ε that will find it profitable to deviate to w.
Plugging the new β̃1 (x) candidate into the w ≤ z < x case analyzed above yields
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�(w|x = w + ε) − �(x |x = w + ε) = J − (1 − δ)

w+ε∫

w

(x − v) dF1 (v),

and so there is an ε > 0 such that the deviation is profitable. Alternatively, consider
the other possible jump of β̃1 (x) = β1 (x) + δ1 (x ≥ w) J . Then, plugging the new
β̃1 (x) into the z < w ≤ x case above yields

�(w − ε|x = w) − �(w|x = w) = J −
w∫

w−ε

(x − v) dF1 (v),

and so there is a type w − ε such that w will deviate to w − ε. This concludes
the proof that when β1 (x) is increasing, it defines a unique symmetric pure-strategy
equilibrium.

When β1 (x) is not increasing, there obviously does not exist an increasing equi-
librium. There is also is no weakly-increasing pure-strategy equilibrium, i.e. an equi-
librium with partial pooling at m. Suppose otherwise, and assume all opponents bid
according to a weakly-increasing β1 (x) such that β1 (x) = mfor allx ∈ [

w, w̄
]
. Now

consider a focal bidder with x ∈ [
w, w̄

]
, and let τ be the probability of the highest

opponent(s) bidding m and the resulting tie-break resulting in a win of the focal bidder.
The focal bidder’s best response to the opponents is almost never to bid m: by bid-
ding m, he gets expected surplus

[
F1

(
w

) + τ
]
(x − m)+δ (1 − τ) (x − β2 (x)). Now

consider two epsilon deviations: bidding m − ε avoids the tie at m by always losing
the first auction instead, and profit changes by �P ≡ +τ [δ (x − β2 (x)) − (x − m)].
Alternatively, bidding m + ε avoids the tie by always winning instead and the profit
changes by −�P . Since β2 (x) is increasing, it is impossible for �P to be zero for all
x ∈ [

w, w̄
]
, and so one of the epsilon deviations is almost always profitable. Therefore

β1 (x) not increasing rules out all non-decreasing symmetric pure-strategy equilibria.
	


Proof of Proposition 2 Let dG (v, x) ≡ dH2|1 (v|x) dH1 (x) , i.e. the differential of
the joint distribution of the top two order-statistics. Also, denote the profit from
w = 0 as �(0) = E (X2) + δE (2X3 − X2 − c). Then, the profit from setting
w ∈ [0, 1] is:

�(w) = EX1 [β1 (X1)] + δ Pr (X1 > w) EX1|X1>w

[
EX2|X1 (β2 (X2) − c)

]

=
1∫

0

x∫

0

vdG (v, x) − δ

1∫

w

x∫

w

[v − β2 (v)] dG (v, x)

+ δ

1∫

w

x∫

0

[β2 (v) − c] dG (v, x)
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where the first term corresponds to standard 1PSB revenue E (X2), the second term
captures the shading in the first period, and the last term captures the second-period
profits.

Now add and subtract the shading and second-period profit of the case w = 0:

= E (X2) − δ

1∫

0

x∫

0

[v − β2 (v)] dG (v, x) + δ

1∫

0

x∫

0

[β2 (v) − c] dG (v, x)

+ δ

w∫

0

x∫

0

[v − β2 (v)] dG (v, x) + δ

1∫

w

w∫

0

[v − β2 (v)] dG (v, x)

−δ

w∫

0

x∫

0

[β2 (v) − c] dG (v, x)

Noting that h2 (v) = N (N − 1) f (v) F N−2 (v) [1 − F (v)] , change integration
order:

u∫

0

x∫

0

vdG (v, x) +
1∫

u

u∫

0

vdG (v, x) =
u∫

0

vh2 (v) dv = Pr (X2 < u) E (X2|X2 < u)

Analogously,

u∫

0

x∫

0

β2 (v) dG (v, x) +
1∫

u

u∫

0

β2 (v) dG (v, x)

=
u∫

0

β2 (v) h2 (v) dv = Pr (X2 < u) E (X3|X2 < u)

and

u∫

0

x∫

0

β2 (v) dG (v, x) = Pr (X1 < u) E (X3|X1 < u) .

Therefore, for any w ∈ [0, 1]:
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�(w) = �(0) + δ

⎧⎨
⎩

w∫

0

[v − β2 (v)]h2 (v) dv

−
w∫

0

x∫

0

[β2 (v) − c]h2|1 (v|x) dvh1(x)dx

⎫⎬
⎭

= �(0) + δ {Pr (X2 < w) E (X2 − X3|X2 < w)

− Pr (X1 < w) E (X3 − c|X1 < w)} .

	

Proof of Proposition 3 Suppose there is an increasing function β (x) that all the N −1
opponents follow. A bidder with valuation x who pretends to be z gets surplus:

�(z; x) = x Pr (Y1 < z) + δx Pr (Y2 < z < Y1) − Pr (Y2 < z) E [β (Y2) |Y2 < z]

=
z∫

0

[x − β (y)] dF2 (y) − x (1 − δ) (N − 1) F N−2 (z) [1 − F (z)]

where the first term is the standard third-price sealed-bid auction surplus, and the
second term reflects the reduction in surplus due to the delay in receiving the good
whenever z is below the top but still above the second highest competitor. The FOC
is:

FOC : [x − β (z)] f2 (z) = x (1 − δ) (N − 1) f (z) F N−3 (z)

× [N − 2 − (N − 1) F (z)]

In a symmetric equilibrium, FOC must hold with z = x :

β (x) = δx + (1 − δ) x F (x)

(N − 2) [1 − F (x)]

The expected revenue of the seller is:

2EX3 [β (X3)] = 2EX2

[
EX3|X2 [β (X3)]

]

= 2

1∫

0

x2∫

0

[
δx3 + (1 − δ) x3

(
F (x3)

(N − 2) [1 − F (x3)]

)]

× dF N−2 (x3)

F N−2 (x2)
dH2 (x2)

= 2δE (X3) + 2 (1 − δ)

1∫

0

x2∫

0

x3
F (x3)

[1 − F (x3)]
f (x3) F N−3 (x3) dx3
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× N (N − 1) f (x2) [1 − F (x2)] dx2

= 2δE (X3) + (1 − δ)

1∫

0

x3 N (N − 1) f (x3) F N−2 (x3)

× [1 − F (x3)] dx3 = �(0) + δc

because

1∫

x3

f (x2) [1 − F (x2)] dx2 = [1 − F (x3)]

[
1 − F (x3)

2

]
by parts.

	

Proof of Proposition 4 For any w, the expected profit in Proposition 2 can be trans-
formed:

�(w) = �(1) − δ

1∫

w

x∫

w

[v − β2 (v)] dG (v, x) + δ

1∫

w

x∫

w

[β2 (v) − c] dG (v, x)

+ δ

1∫

w

w∫

0

[β2 (v) − c] dG (v, x)

= �(1) + δ {Pr (X2 > w) E (2X3 − X2 − c|X2 > w)

+ Pr (X1 > w > X2) E (X3 − c|w > X2)}

Noting that E (X3 − c|w0 > X2) = E (X3 − c|X1 = w0) = 0, the non-commitment
seller makes:

�(w0) = �(1) + δ Pr (X2 > w0) E (2X3 − X2 − c|X2 > w0) .

Finally, c can be expressed in terms of w0 because c = E (X3|X1 = w0) =
E (X3|X2 < w0). 	

Proof of Corollary 2 First express c in terms of w0:

�(w0) < � (1) ⇔
1∫

w0

x∫

w0

[
β2 (v) − N − 2

N
w0

]
(N − 1) v(N−2)dvNdx

<

1∫

w0

x∫

w0

[v − β2 (v)] (N − 1) v(N−2)dvNdx

⇔ additional profit =

(
N − 2

N (N + 1)

) [
N − (N + 1) w0 + wN+1

0

]
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<
1 − (N + 1) wN

0 + NwN+1
0

N + 1
= additional shading

⇔ λ (w0) = −N (N − 3) + (N − 2) (N + 1) w0

− N (N + 1) wN
0 +

(
N 2 − N + 2

)
wN+1

0 > 0.

When N = 3, λ (w) > 0 for every w ∈ (0, 1), and λ (0) = λ (1) = 0, so the seller
prefers advance listing for every c > 0 and is indifferent when c = 0. When N ≥ 4,
the λ (w) has the following properties: λ (0) < 0, λ′ (0) > 0, λ′′ (0) = 0, λ (1) =
0, λ′ (1) = 0, λ′′ (1) = 2N (N + 1) > 0. Since λ′′ (1) > 0 and λ′ (1) = λ (1) = 0,
there exists a w < 1 such that λ (w) > 0 and λ′ (w) < 0. Together with the fact that
λ (0) < 0, the intermediate value theorem applied to λ implies that there is another
z < w , z ∈ (0, 1) such that λ (z) = 0. The intermediate value theorem applied to λ′
then implies that there is a v ∈ (z, 1) such that λ′ (v) = 0. This v must be the only
root of λ′ in (0, 1) because:

λ′ (w) = (N − 2) (N + 1) − N 2 (N + 1) wN−1 + (N + 1)
(

N 2 − N + 2
)

wN

and so

λ′ (w) = 0 ⇔ N − 2

N 2 = (1 − w)wN−1

1 − wN
,

where LHS is a constant and RHS is strictly increasing in w:

d

dw

(
(1 − w)wN−1

1 − wN

)
> 0 ⇔ N >

1 − wN

1 − w
=

N−1∑
k=0

wk

which is true for every N and w ∈ (0, 1). Since v is the unique root of λ′ in (0, 1), z is
the unique root of λ in (0, 1), and λ is negative below z (seller prefers advance listing)
and positive above z (seller prefers non-commitment). The cutoff cost is obtained from
the definition of w0: c∗ (N ) = N−2

N z. The sufficient bound c∗ (N ) < N−3
N−1 follows

from a region in which shading exceeds profit not just in expectation but for all values
of X2 > w0:

β2 (v) − N − 2

N
w0 < v − β2 (v) ⇔ (N − 2) (N − 1)

N (N − 3)
w0 > 1 ⇔ c <

N − 3

N − 1
.

It remains to be shown that c∗ (N ) increases in N . Since N−2
N increases in N , it is

sufficient to prove that wherever λ (w) is increasing, increasing N reduces λ (w), and
so λ (w|N ) intersects the x-axis further to the right from λ (w|N − 1). The claim is:

λ′ (w|N ) > 0 ⇒ �λ (w) ≡ [λ (w|N ) − λ (w|N − 1)] < 0.
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To prove the claim, note

�λ (w) = 4−2N +2 (N − 1) w + N (N − 1) wN−1 −
(

N 2−N + 2
)

wN (2 − w) ,

add and subtract 2wN−1 to obtain:

�λ (w) = 2
(

1 − wN−1
)

− 2 (N − 1) (1 − w)

− (N − 2) wN−1 (1 − w)2 + N 2wN−1 (1 − w) (1 − w)

From above,

λ′ (w|N ) > 0 ⇒ N 2wN−1 (1 − w) > (N − 2)
(

1 − wN
)

,

so

�λ (w) < 2
(

1 − wN−1
)

− 2 (N − 1) (1 − w) − (N − 2) wN−1 (1 − w)2

+ (N − 2)
(

1 − wN
)

(1 − w)

= Nw
(

1 − wN−2
)

− (N − 2)
(

1 − wN
)

≡ µ (w) < 0.

To see the last inequality, note that µ (0) < 0, µ (1) = 0, µ′ (0) > 0, µ′ (1) = 0,

and µ′′ (w) < 0 in (0, 1), so w = 1 is the only root of µ (w) in [0, 1], ensuring that
µ (w) < 0 in (0, 1). 	


Proof of Proposition 5 The sequential auction with pre-commitment to a second-
period reserve is revenue equivalent with the direct-revelation mechanism that allo-
cates one unit of the good to the highest bidder immediately, and one unit to the
second-highest bidder in the future. Because the bidders are risk-neutral, the delay
of the second unit enters their utility in the same way as a reduction in probability,
so the probability of type-x bidder winning a unit in the equivalent direct revelation
mechanism is:

q (x) = F N−1 (x) + δ (N − 1) [1 − F (x)] F N−2 (x) 1 (x > r) .

Since q (x) is non-decreasing in x , standard incentive-compatibility and individ-
ual-rationality arguments (Myerson 1981) can be used to derive the expected payment
m (x) of a single bidder:

Ex [m(x)] =
1∫

0

⎡
⎣xq(x) −

t∫

0

q(t)dt

⎤
⎦ f (x)dx = Ex

[(
x − 1 − F(x)

f (x)

)
q(x)

]
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Because the bidders are drawn iid from F , the expected revenue from N bidders is
simply N Ex [m (x)]. The expected cost is just δc Pr (X2 > r), which can be writ-
ten as: δc Pr (X2 > r) = N Ex

[
δc (N − 1) (1 − F (x)) F N−2 (x) 1 (x > r)

]
. Substi-

tuting q (x) into the expected revenue and subtracting the expected cost yields the
expected profit:

�(r) = N Ex

[(
x − 1 − F (x)

f (x)

)
F N−1 (x) + δ (N − 1) (1 − F (x))

× F N−2 (x) 1 (x > r)

(
x − c − 1 − F (x)

f (x)

)]

The direct revelation mechanism thus additively separates the impact of r on �(r)

into the effect of screening the second highest bidder, irrespective of the other bid-
ders. Since x − 1−F(x)

f (x)
is increasing, it is immediate that screening at r such that(

r − c − 1−F(r)
f (r)

)
= 0 is optimal. 	


Power-distribution example of relationship between m* and r*:

Claim When F (x) = xt on [0, 1] with t > 0, there is a unique threshold price
m∗(c|N , t) for every N and t . Let r∗(c|t) be the optimal second-unit reserve price.
For every N , m∗(c|N , t) > r∗(c|t) when t > 1, and m∗(c|N , t) < r∗(c|t) when t < 1.

Proof F (x) = xt implies

h2|1 (v|w) = t (N − 1) vt(N−1)−1

wt(N−1)
,

and so the FOC of the maxw∈[0,1] �(w) problem is:

N − 1

1 + (N − 2) t
=

[
(t + 1) (N − 1)

1 + (N − 1) t
w − c

]
wt−1.

The LHS of the equation is a positive quantity constant in w, and the RHS of the
equation is positive and increasing for

1 > w > c
1 + (N − 1) t

(t + 1) (N − 1)
.

By the intermediate value theorem, there is a unique w∗ that solves the equation,
and the implied m∗ is

m∗ = β1
(
w∗) = (N − 1) t

1 + (N − 1) t
w∗.
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The optimal reserve-price r satisfies

c = r − 1 − F (r)

f (r)
(Proposition 5)

which becomes (t + 1) r t − ctr t−1 = 1 under the F (x) = xt assumption. Inverting
the β1 at the optimal reserve by using the bidding function form r = (N−1)t

1+(N−1)t wr

yields the optimal-reserve condition in terms of the cutoff type wr :

1

t

(
1 + (N − 1) t

(N − 1) t

)t−1

=
[
(t + 1) (N − 1)

1 + (N − 1) t
wr − c

]
wt−1

r .

Note that the RHS of the optimal-reserve condition is the same as the RHS of the
FOC equation above, so wr > w∗ whenever

1

t

(
1 + (N − 1) t

(N − 1) t

)t−1

>
N − 1

1 + (N − 2) t

and vice versa. This inequality holds iff:

λ (t) ≡ t log [t (N − 1)] − log [1 + (N − 2) t] − (t − 1) log [1 + (N − 1) t] < 0.

Since λ (1) = 0 and λ′ (t) > 0 for all t ≥ 1, t > 1 ⇒ λ (t) > 0. Since λ (0) ≡
limt→0+ λ (t) = 0 and limt→0+ λ′ (t) = −∞, λ (t) < 0 near zero. Since λ (1) = 0
and λ′ (1) > 0, 0 < t < 1 ⇒ λ (t) < 0 unless λ has a root in (0, 1). Such a root does
not exist because it would imply at least two roots of λ′′ in (0, 1). However,

λ′′ (t) = 0 ⇔ 1 − t − N (N − 2) t2 = 0,

and so there is only one positive root of λ′′ (t), namely

−1 + √
1 + 4N (N − 2)

2N (N − 2)
< 1.

So, 1 is the unique positive root of λ, and 0 < t < 1 ⇒ λ (t) < 0. 	
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