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EC.1. Relationship to eBay and Other Managerial Implications
The model studies the profit-maximization problem of a monopolist, who lives infinitely long in dis-
crete time, can procure one unit of the good in each period at a non-trivial marginal cost, and faces
overlapping generations of unit-demand bidders, who live for two periods each. These assumptions
are loosely motivated by empirical regularities in the eBay marketplace. In the data about the eBay
MP3-player market analyzed by Zeithammer (2006), at least 43 percent of the 22,603 unique bidders
participated in two auctions or more (median three) in the data-window of three months, but 93 per-
cent of the eventual winners only won one auction. Therefore, it seems that most eBay bidders on
MP3-players have unit demand, and many remain active in future periods whenever they lose. More-
over, the bidders observed participating in multiple auctions tend to be focused on only one model of
MP3 player, bid in auctions ending only 3.5 days apart on average (median 1 day), and disappear from
the data after 9.2 days on average (median 3.6 days). This short “lifespan” of individual bidders in an
eBay consumer-electronics market motivated the model of the demand-side as composed of genera-
tions of bidders, with each generation only persisting for a relatively small number of periods. Since
new bidders appear constantly on eBay and compete with the remaining “old” bidders, a model with
overlapping generations results: in the average MP3 player auction that received at least one bid, 7.5
unique bidders participated, but the long-term average over three months is only 3.2 unique bidders
per such auction.EC1 Several empirical regularities concerning eBay sellers are also captured in the
model assumptions: the majority of the category volume is sold by institutional sellers who sell many
units. For example, the 340 (8.5 percent) sellers observed selling at least five different units in three
months sell an average of 16 units each, and account for 53 percent of the volume. These institutional
sellers are much more long-lived than the buyers—they are observed throughout the data, and they
space their sales 6 days apart on average. A majority of them specialize on just one model of MP3
player (median 1, average 1.9 out of 30 top-selling models). This motivated the model of a seller as
infinitely lived and specialized in one type of good. Zeithammer (2006) discusses more details of this
data, and he also provides empirical evidence for forward-looking bid-shading. Bid-shading was also
detected in state highway-procurement auctions by Jofre-Bonet and Pesendorfer (2003).

Managerial Implications
This work contributes to the management science literature by exploring general qualitative properties
of a market institution of large and growing importance—the sequential auction. The model illustrates
why and how to take the other side of the market into account when formulating one’s own strategy,
and what are the properties of the resulting equilibrium. Both managers and management scientists
will benefit from the findings. Managers, whether optimizing a selling strategy for their eBay sales
channel or formulating a bidding strategy for a procurement-contract auction, will benefit from a
deeper understanding of what past outcomes should they take into account, how to carefully inter-
pret the demand information contained in past prices, and why do they need to anticipate the future
strategies of the opposite side of the market. Managers who design the market-rules themselves will

EC1 Participation is partly unobserved on eBay because bidders can only submit their bid if it exceeds the highest bid at the
moment. The number of observed participants thus underestimates the number of actual participants.

ec1



Zeithammer: Research Note: Strategic Bid-Shading and Sequential Auctioning with Learning from Past Prices
ec2 pp. ec1–ec11; suppl. to Management Sci., doi 10.1287/mnsc.1070.0691, © 2007 INFORMS

benefit from the “self-preservation instinct” finding that the possibility of bid-shading does not nec-
essarily reduce the scope of auctions to only very profitable markets. Finally, management scientists
will be able to build on the stylized model presented here in developing decision-theoretic statistical
models that could be used to analyze the wealth of data generated by auction markets like eBay. The
present model emphasizes the need for equilibrium analysis of such markets, and gives guidelines
about the phenomena likely to exist as well as the factors that moderate them.
The proposed model abstracts away from several complexities of real-world marketplaces, so it can

only provide qualitative properties of optimal buying and selling, not concrete quantitative prescrip-
tions for managerial action. For example, the model predicts that selling strategies will exhibit pulsing
near the zero-profit contour of the parameter-space, but remains silent on how to find the optimal
length of the pulsing interval on eBay, or on the optimal quantity the pulsing seller should offer for
sale. Analogously, the model predicts that bid-shading will be moderated by gains from trade, but
remains silent on how to calibrate this effect in procurement settings. Finally, the model predicts that
sellers will sell more often after high recent prices, but it does not provide a practical algorithm for
calculating optimal closed-loop selling strategies under realistic assumptions about bidders and other
sellers.
The strongest assumption employed by the present model is that the seller is a monopolist. While

this assumption fits the highway-construction market well (the government is the only “seller” of
such contracts), more work is needed to characterize concrete seller strategies in hyper-competitive
markets like eBay. This paper shows that the “self-preservation instinct” result persists even with two
competing sellers despite the fact that competition limits the equilibrium reduction of bid-shading
away from the zero-profit contour. However, the paper does not explicitly investigate selling strategies
when there are more than two sellers, and it does not investigate competitive selling strategies for
individual sellers with only one item to sell despite the fact that such sellers are quite common on eBay.
It is clear from the paper that even the simplified abstract models are already difficult to solve, so

actual implementation of the ideas proposed here remains beyond the scope of this paper. I hope that
future research will take up this challenge and finish the work started here by formulating tractable
models of equilibrium behavior under more realistic assumptions. While stopping short of this goal,
this paper at least considers several alternative specifications of the proposed model, and demonstrates
in §3 that the proposed qualitative properties of equilibrium behavior are robust to those changes in
the assumptions. Moreover, even the abstract model does capture at least some aspects of practice
because its assumptions are designed to capture empirical regularities of markets like eBay, at least
regarding buyer and seller lifespans, repeat-bidding behavior, and revealed preferences.

EC.2. Additional Discussion of Properties of Optimal Selling
Figure EC.1 illustrates the qualitative properties of the equilibrium (Proposition 2). The discussion of
optimal selling can be extended as follows: To limit the extent of bid-shading, the seller does not have
to use a closed-loop strategy that interprets past prices. Suppose that the seller cannot learn from
prices, but that she can pre-commit to any pattern of selling over time, for example suppose that she
is forced to play an open-loop strategy. Given the overlapping-generations model with lifespan of
two periods, only two open-loop strategies can be beneficial: pulsing (selling every other period) and
always-selling. Pulsing trivially rules out bid-shading because it sells only once within each genera-
tion’s lifetime. It also increases the amount of demand-side competition, delivering more profit per
auction, but only half as often. Specifically, let R2G be the expected profit with two entire generations

Figure EC.1 Qualitative Equilibrium Characterization
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Figure EC.2 Effect of Bid-Shading and Learning from Prices on Optimal Selling Strategy
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Notes. Remaining parameters are set to L= 0, H = 3. The three solid lines are upper bounds in (p� �)-space of the seller always selling, ordered
with the increasing sophistication of the seller: A: naïve seller that does not consider bid-shading and does not learn from past prices. B: a seller
who considers bid-shading, but does not learn from past prices C: a seller who both considers bid-shading and learns from past prices (the
� = C0 constraint in Proposition 2). The shaded area represents the extent of bid-shading in equilibrium of the most sophisticated seller (the
second constraint in Proposition 2).

bidding their valuations in a single auction (R2G =RQ from §2 with a= 0�, and let R1G be the expected
profit with only one generation of bidders bidding their valuations in a single auction:

R2G = �1− �1− p�2	H + �1− p�2L− c > �1− p�H + pL− c=R1G�

Then, pulsing delivers the net expected profit �10 = R2G/�1− �2�, and it is possible that �10 exceeds
the profit �11 =�all

Q from always-selling.
To assess the profits from always selling, it is essential that the seller understands the phenomenon

of bid-shading. Suppose the seller naively does not take bid-shading into account, and assumes instead
that all bidders bid their valuations. Then, the open-loop seller ends up selling too often, because she
assesses �11 too high. In particular, she thinks a= 0 which can be shown to imply:

�naive
11 = �1− ��1− p��ER2G + ��1− p�ER1G

1− �
>�all

Q =�11�

This is illustrated in Figure EC.2 by the shift from curve A ��naive
11 = �10� to curve B ��11 = �10�.

Interestingly, compared to an open-loop seller who understands bid-shading, a closed-loop seller who
cannot pre-commit may end up selling too often as well, especially when she is very impatient, i.e.
when � is low. This is illustrated in Figure EC.2 by curve C �� =C0�—the boundary of always-selling
from Proposition 2—crossing curve B for low values of �. The closed-loop seller has a commitment
problem because observing H − a reveals a relatively high level of demand, so the bidders do not
refrain from bid-shading as much as they do when facing an open-loop seller. Thus, the seller can
sometimes prefer to live in an open-loop world. This illustrates why the equilibrium dynamic selling
is not just a solution to a dynamic-control problem: the bidder’s strategy changes based on the strat-
egy played by the seller. The commitment problem of the closed-loop seller is a general feature of
sequential auctions as demonstrated in a separate paper (Zeithammer 2007).
The policy implication for sellers is thus that bid-shading is an important aspect of bidding behavior,

and sellers need to understand bid-shading as a strategic response of the bidders to their selling strate-
gies. Adaptive learning from past prices and the ability to commit to a future pattern of selling are
both useful strategies for limiting the extent of bid-shading. Taken together, these two selling strategies
suggest a general intuition about optimal selling in auction markets, namely the benefit of spacing
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sales apart from each other in time, especially when the general profitability of the market is low for
the seller. A combination of the two selling strategies is beyond the scope of this paper, but it is likely
that a seller may want to restrict her decision-frequency to optimally balance the power of the two
effects. For example, it is clear that the seller would prefer to be an open-loop seller when p is low and
H is high: an open-loop seller would eliminate the CQ >� >C12 “wedge” of no selling in Figure 2.

From the point of view of a researcher analyzing a sequential auction market, Figure EC.2 illustrates
the importance of understanding both the seller beliefs about the bidder strategy, and the closed-/
open-loop nature of the seller’s policy: with the same bidders, the different assumptions about the
seller obviously lead to very different predictions about optimal selling. For example, researchers
trying to identify the seller’s costs from observed behavior would arrive to very different conclusions
depending on the particular assumptions about learning and strategies chosen.

EC.3. Basic Model with Simpler Bidder Beliefs: Bidders Have Prior Beliefs
About Old Competitors
Suppose the model is the same as in §2, but the bidders do not have knowledge of the seller’s state.
Instead, they assume that Pr�old High� = p. Then, Proposition 1 still applies, but clearly with new
High bidders shading in every period, so �= 1. Therefore, the shading decrement is greater, let it be
denoted by b = ��1− p��H −L�/�1− �p�, which is a from Proposition 1 with � = 1. The short- term
profits, indicated here by tilde to distinguish them from those in Proposition 2 are modified in that
�R0 = �R1, i.e., the 1 state is not as lucrative as in the basic model, where bidders do not shade in 1:

�R0 = p�H − b�+ �1− p�L− c= �R1 and �RQ = pH + p�1− p��H − b�+ �1− p�2L− c�

Therefore, the seller’s learning process from Figure 1 still applies, but with the a replaced with b, and
with price H − b instead of H arising in state 1. The fact that new High bidders shade in all states
allows one simplification of the assumptions, namely it is no longer necessary to assume that old
bidders win ties (see Footnote 3, and note that Proposition 1 still holds, but its proof becomes more
complicated and is left as a challenge to the reader). Given these preliminaries, an analogue result to
the characterization of Proposition 2 results here, without loss of too much generality focusing on the
L= 0 case:

Proposition A2 (Equilibrium Characterization When Bidders Have Prior Beliefs). The equi-
librium of the auction market depends on the model parameters as follows when L= 0:
• When the relative gains from trade are so large that �R0 > �p�H − c�/�1+ �p�, the seller sells in every

period and the bidders shade their bids down. The seller makes �all
Q = ��1−��1− p�	 �RQ +��1− p� �R1�/�1−��.

• When the relative gains from trade are medium such that −�2p�1−p��H − c� < �R0 ≤ �p�H − c�/�1+ �p�,
the seller does not sell in state 0 (after price L), sells in �2�1�Q�, and the bidders shade their bids. The seller
makes

��not0
Q = �RQ + �p�1− p�� �R0 + �p�H − c�	/�1− ���1+ ��1− p�+ �2p�1− p��

• When the relative gains from trade are so small that

−��1− p��1+ ��1− p�	/�2− p��1− �p�� < �R0 ≤−�2p�1− p��H − c��

seller does not sell after prices L or (H-a), and bidders therefore do not shade their bids down. The seller either
uses the pulsing strategy of selling every other period, or also sells in other informational states associated with
the new learning environment without bid-shading.
• When the relative gains from trade are even smaller such that �R0 ≤ −��1− p��1+ ��1− p�	�/��2− p� ·

�1− �p��, the seller never sells.

Proof. The proof is analogous to the proof of Proposition 2:
Case 1. Bid-shading, Seller always sells

��0 = p�H − b�+ �1− p�L− c+ ��p��1 + �1− p���0	

��1 = p�H − b�+ �1− p�L− c+ ��p�H − c+ ���Q�+ �1− p���0	

��Q = pH + p�1− p��H − b�+ �1− p�2L− c+ ��p��Q + p�1− p���1 + �1− p�2 ��0	

and ��0 >���Q, ��1 >���Q, and ��Q > 0
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Solution:

��Q = �1− ��1− p�	 �RQ + ��1− p� �R1

1− �

and ��0 > ���Q the binding constraint, satisfied whenever �R0 > �p�H − c�/�1+ �p�, implies the other
constraints.
Case 2. Bid-shading, Seller withholds supply in the low state:

��1 = p�H − b�+ �1− p�L− c+ ��p�H − c+ ���Q�+ �1− p����Q	

��Q = pH + p�1− p��H − b�+ �1− p�2L− c+ ��p��Q + p�1− p���1 + �1− p�2���Q	 and

���Q > p�H − b�+ �1− p�L− c+ ��p��1 + �1− p����Q	� ��1 >���Q� and ��Q > 0

The solution is:

��Q =
�RQ + �p�1− p�� �R0 + �p�H − c�	

�1− ���1+ ��1− p�+ �2p�1− p��

and the first two constraints are equivalent to −�2p�1 − p��H − c� < �R0 ≤ �p�H − c�/�1 + �p�, while
the last constraint ��Q > 0 does not bind. The implied region of the parameter space is obviously
non-empty.
Case 3. No bid-shading, Seller withholds supply in the 1 and 0 states: Now suppose that ��1 ≤ ���Q in

Case 2. Then, the seller does not sell in state 1. From Proposition 1, the bidders have no incentive to
underbid, and the game reverts to the game without bid-shading. The game without bid-shading is
hard to analyze because the seller’s ability to learn from prices decreases. It is clear that the seller
exists completely whenever even pulsing is not profitable, which can be written in terms of �R0 as

−�1− p��1+ ��1− p�	/�2− p��1− �p� < �R0 ≤−�2p�1− p��H − c�

Case 4. No selling: When �R0 ≤−��1− p��1+ ��1− p�	�/��2− p��1− �p�� even pulsing is unprofitable,
the seller does not sell. This constraint is identical to the

�1− p�2L+ �1− �1− p�2	H − c < 0 ⇔ p�H −L�/�c−L� < 1/�2− p�

from Proposition 2. �

Discussion of Proposition A2: Please see Figure EC.3 for an illustration of Proposition A2 with L= 0
and � = 0�9, i.e. the same as in Figure EC.1. The case of simpler beliefs clearly also has a simpler
equilibrium than the basic model because ��not0

1 > ���not0
Q implies ��not0

Q > 0. This holds because state 1
is not as lucrative here, so the seller is never in a position where she would like to sell in 1 but not in
Q. In other words, the CQ >� >C12 “wedge” of no selling that arises in the basic model and is shown
in Figure EC.1 does not occur here. Except for this simplification, all the intuition for Proposition A2
is the same as that for Proposition 2. For example, the bidders still shade as long as the seller sells in
state 1.
In comparing the two versions of the basic model, it is clear that the seller is worse off with the

“prior-beliefs” whenever the gains of trade are large: when the seller always sells, the bidders with
simpler beliefs shade more (b > a� and more often (in all states instead of just in 0 and Q). On the
other hand, when the gains from trade are relatively low but still high-enough to justify selling, the
seller is better off with the “prior-beliefs” bidders: the bid-shading ceases at higher levels of H for any
given level of p� This is because greater shading requires greater gains to be supported.

EC.4. Basic Model with Independent Bidders Within Each Generation
Suppose each bidder (rather than “each generation” as in the basic model) can be High or Low, the
probability of High is p, and two new bidders are drawn independently in each period. For tractability,
it is necessary to assume that the bidders always reduce their bid, for example because they have
“prior” beliefs about their current old competition (see EC.3. in this Supplement). A direct analogue
to Proposition 1 holds, with the modification that the new High bidders always bid H − a such that

a= ���1− p�2�H −L�+ �1− �1− p�2�a	 ⇒ a= ��1− p�2�H −L�/1− ��1− �1− p�2	



Zeithammer: Research Note: Strategic Bid-Shading and Sequential Auctioning with Learning from Past Prices
ec6 pp. ec1–ec11; suppl. to Management Sci., doi 10.1287/mnsc.1070.0691, © 2007 INFORMS

Figure EC.3 Equilibrium Characterization
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Notes. Illustration of Proposition A2 by fixing reamaining parameters to L= 0, �= 0�9. To shaded area shows where bidders shade their bids in
equilibrium, with the general bidder strategies shown in ovals. The seller strategies are shown in italics.

The price-table is a generalization of Table 1 in that it has one more column H/L to capture the
situation when the new bidders are of different types. The seller still cares only about the number
of high bidders, because the additional Low old bidder in H/L does not affect learning or payoffs.
Therefore, the state H/L is the same as 1, and the price-table over payoff-relevant states is as shown
in Table EC.1.
The inference from prices is therefore modified such that:
price=H − a: Then the new bidders must have been both High or H/L, and so there must be either

one remaining High bidder (when there were no old High bidders and the new bidders were both High
and when there was one old High bidder and the new bidders were actually H/L), or two remaining
High bidders (there was one old High bidder and the new bidders were actually both High):

�p0� p1� p2�→
(
0�

p0p
2 + 2p1p�1− p�

p0p
2 + p1p�2− p�

�
p1p

2

p0p
2 + p1p�2− p�

)
�

So from the Q = ��1− p�2�2p�1− p�� p2� state, the price of H − a sends the seller to a “mixed” state
M0= �0�5�1−p�/�5−3p��2p/�5− 3p��. The most important aspect of M1 is not the exact probability p2,
but the fact that p0 = 0. This implies that another H − a then tells the seller that there must have been
exactly one old bidder, and the subsequent state is just M1= �0�2�1− p�/�2− p�� p/�2− p��. In other
words, yesterday’s p1 drops out of the updating equation. Therefore, the seller can only be in five
payoff-relevant states in this game: 0, Q, 1, M0, and M1, one of which, the 1 state, is only accessible
when the seller always sells (please see Figure EC.4 for an illustration of the learning process). This
allows a Bellman analysis analogous to that in §3.4.

Table EC.1 Prices in the Auction Market with Bid-Shading

New bidder type; probability
Number of old High
bidders (belief) 2L 	1− p
2 1L & 1H; 2p	1− p
 2H; p2

0 (p0) L L H − a

1 (p1
 L H − a H − a

2 (p2
 H H H

Number of High bidders left

0 (p0) 0 0 1
1 (p1
 0 1 2
2 (p2
 0 1 2
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Figure EC.4 Seller’s State Transitions in a Model with Independent Bidders
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Consider the non-degenerate situation, in which the seller does not sell in state 0. Since the M1
state is more lucrative than the M0 state and M1 is only accessible through M0, the seller either sells
in both M0 and M1 or uses the pulsing strategy. Whenever withholding supply in M0 is a credible
threat, the bidders will not shade their bids. The solution of ��Q��M0��M1� is extremely algebraically
involved, but it is possible to argue that withholding supply in M0 eventually becomes a credible
threat as the profitability of the auction-market shrinks, and so the main qualitative conclusion of
Propostion 2 will hold.

EC.5. The Basic Model with Supply-Side Competition
Suppose the bidders are the same as in the basic model, and let there be two sellers, each identical to
the monopolist considered in the basic model, i.e. each capable of procuring and selling one unit of
the good in each period. Let the demand-side of the market remain exactly as in the basic model, i.e.
overlapping generations of types L or H , with two buyers per generation with two-period lifespans.
When both sellers decide to enter the market, they compete for the same buyers, both obtaining
lower sale prices than if selling alone. A simple model of such competition is a third-price Vickrey
auction that sells both units of the good to the first and second highest bidders for the third highest
bid. Because of dominant strategies of Vickrey auctions, equilibrium bidding in the third-price two-
unit auction is almost the same as in the second-price single-unit auction analyzed in Proposition 1.
In particular, all Low bidders and old bidders always bid their valuation while new High bidders
underbid as long as they have a chance of making a positive surplus should they lose, with the precise
magnitude of bid-shading depending on the equilibrium being played. This model of the market thus
focuses the impact of seller competition on the seller side of the market, because the buyer-side of the
market responds to the aggregate supply of both sellers using essentially the same bidding function
that was the best response to the supply of a single seller.
The seller model involves an entry-coordination problem because in some time-periods, the

demand-side of the market can only provide positive profits for a sale of a single unit. If the two
sellers were asked to choose simultaneously whether or not to sell in the beginning of a given period,
mixing strategies would no doubt result, and the market would be inefficient because the coordination
problem would not be solved completely. Since the real world does not proceed in discrete time, it is
more realistic to assume that the sellers know of each other’s most recent selling decisions and avoid
overcrowding the market. The eBay sellers probably come to the site frequently (but not continuously),
examine the recent demand for their products by looking at the recent prices, and list another unit of
the good if the demand seems high and there are not many competing recent listings by other sellers
already. In other words, sellers top-up the supply of the good as long as there is sufficient expected
demand to make that decision more profitable than the decision to wait. One way to capture such
an ongoing dynamic in a discrete-time model is to assume that in the beginning of each period, one
of the sellers is chosen by a coin-flip to decide first. The second seller in that period then observes
the first seller’s entry decision (but not the outcome of that auction) and decides whether or not to
enter himself as well. Since the second seller does not observe the outcome of the first seller’s auction
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Figure EC.5 Entry Game Between the Sellers
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before making her selling decision, both sellers are on equal footing in terms of information about
current demand, and the second seller thus does not learn anything new from the first seller’s choice;
the sequencing merely solves the coordination problem whenever only one seller should be selling.
The entry game in an arbitrary period of the game can be further formalized as follows: the players

are symmetric in their knowledge about current demand and in their costs, so the short- and long-
term profits depend only the number of sellers who enter. Fix the current belief-state, and let #k be
the current-period profits when k sellers are selling, and let %k be the corresponding continuation
profits to all sellers when k sellers are selling. Since selling today depletes high-valued buyers who
may otherwise be present tomorrow, it must be true that %0 ≥ %1 ≥ %2. Since the market price with two
sellers selling is the third-highest bid while the price with one seller selling is the second-highest bid,
#1 ≥ #2. Finally, not selling means earning zero in the current period. The resulting game is displayed
in extensive form in Figure EC.5, with the total profits shown in brackets as [first seller, second seller].
The play �out� in� never happens, because the first seller can always do better than %1 by playing in
whenever #1 + %1 > %0, i.e. when the second player would enter after observing the play out by the
first player. Therefore, the entry game merely decides which of the two players will be the only player
when the market can only bear a single player. Given #1 + %1 > %0, the first player enters, and the
second player joins in if #2 + %2 > %1� Given the relative magnitudes of %k, it is clear that both sellers
enter if #2 is positive and big enough whereas there will only be one seller when #1 is positive and
big enough but #2 is negative.
The magnitudes of #k and %k are a function of the knowledge state, and the demand-side assump-

tions provide their structure. As long as the buyers underbid, the same four knowledge-states
�0�Q�1�2� as in the basic model lie along the equilibrium path, and the amount of selling in each
state depends on the overall profitability of the market. The optimal steady-state selling is cap-
tured most parsimoniously by considering the total market profits, i.e. the total market profits of
both sellers in a given state �& �0�Q�1�2�→ R. This parametrization also maintains a close connec-
tion to the monopoly model of §2: analogous to the monopolist’s state-dependent selling function
sell& �0�Q�1�2� → �yes�no�, a state-dependent entry-function #entrants& �0�Q�1�2� → �0�1�2� cap-
tures the optimal selling behavior in the competitive context. A particular entry-function is a perfect
Bayesian Nash equilibrium of the game between the sellers when the channel profits satisfy the
appropriate Bellman equations dictated by learning and the number of entrants in each state is an
equilibrium of the entry game conditional on the channel profits. Table EC.2 outlines for each knowl-
edge state the current and future profits in the sales channel as a function of the number of sellers
selling. The learning from prices can be discerned from the future profits.
To determine the state-dependent #k and %k, note that the future channel profits �n are shared

equally between the two sellers because the order-assignment for the entry game is random. In other
words, when �n are the total equilibrium profits of the two sellers together in a future state n, each
seller can expect to get �n/2 for himself, so % = ��n/2. Note that this makes the model with compe-
tition coincide exactly with the monopoly model when there is no state with both sellers selling, i.e.
when in all knowledge states, #2+%2 <%1. In that case, at most one seller sells in a period, each seller
gets half of the monopoly profits in expectation, and all other predictions of the monopoly model hold
exactly. This will definitely be the case along the zero-profit contour in the �p�H� parameter space,
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Table EC.2 Total Market Profits as a Function of State and Number of Entrants

Current state Number of sellers Total current profit Future profit (discounted by �)

0 1 R0 p
0 + 	1− p

1

2 2L 
0

1 1 R0 p
0 + 	1− p

2

2 2R0 p
0 + 	1− p

1

2 1 H 
Q

2 2R0 p
0 + 	1− p

2

Q 1 RQ p2
0 + p	1− p

1 + 	1− p

Q

2 2R0 − 2p	1− p
	H − a− L
 < 2R0 �p+ p	1− p
�
0 + 	1− p
2
2

Any 0 0 
Q

so the basic monopoly model is good in characterizing the behavior of the market near its existence
threshold however many sellers there are
The competition among multiple sellers makes it harder but not impossible to withhold supply

in order to discourage bid-shading. It is straightforward to demonstrate that entry& �0�Q�1�2	 →
�0�1�0�1	 is still sometimes the best response to bid-shading and since there is no selling in state 1,
the subsequent best response of the buyers is to stop bid-shading. The entry pattern [0,1,0,1] produces
the following Bellman equations of the channel profits:

�0 =�1 = ��Q� �2 =H + ��Q

�Q =RQ + ��p2�0 + p�1− p��1 + �1− p��Q	

Therefore, �Q = RQ/��1− ���1+ p��	. The entry pattern is an equilibrium of the game between the
sellers if the following incentive constraints hold:
1: no entry ⇔R0 <�/2��Q − p�0 − �1− p��1	
1: no entry ⇔R0 <�/2��Q − p�0 − �1− p��2	
Q: one entrant ⇔RQ > 0
Q: not second entrant ⇔R0 − p�1− p��H − a−L� < �/2��Q − �p+ p�1− p�	�0 − �1− p�2�2	
2: one entrant ⇔H > 0
2: not second entrant ⇔R0 <�/2��Q − p�0 − �1− p��2	
The two critical, potentially binding, constraints that imply all the rest are (1, no entry) and (Q, one

entrant), equivalent to: RQ > 0 and 2R0 + ��1− p�H < ��1− ���Q ⇔ 2R0 + ��1− p�H < RQ/�1+ �p�. It
can be shown that here exists a region of the parameter-space when both of these constraints hold.
Intuitively, there will be no entry in 1 when the short-term profit R0 is negative, but the profit from
waiting positive and sufficiently large.
It is interesting to compare the above incentive constraints with those of a monopolist. A monopolist

captures the entire future income stream, so she is more likely to forego selling in 1, namely whenever
R0 +��1− p�H <RQ/�1+�p�. Therefore, bid-shading will happen more often with competition. When
the market becomes profitable enough to sometimes accommodate both sellers, the basic dynamics of
the monopoly situation remain, but there is more selling and hence more bid-shading.

EC.6. Learning from Prices in the Continuous Model
Suppose �b1�v �Wt�� b2�v �Wt�� are monotonically increasing in v for every Wt . Everyone starts out (cor-
rectly) believing that the old bidders follow H1, so W1 =H1. Price pt is the upper bound on everyone’s
bids at time t� implying 
vt+1 = b−1

1 �pt � Wt�—the maximum possible valuation of new bidders given
pt . The next-period belief then depends on the age of the winner, who bid pt . Let (t = (�pt�Wt� =
Pr�oldwont � pt�Wt�. Then, the belief evolves according to the following transformation T : Wt+1�x�=
T �Wt � 
vt+1��x� = (tH1�x � x < 
vt+1�+ �1− (t�H2�x � 
vt+1� where H1 is the truncated distribution of the
highest valuation within a generation of bidders, and H2 is the conditional distribution of the second
highest valuation within a generation given the first highest valuation:

H1�x � x < 
v�=
(
F �x�

F �
v�
)N

� H2�x � 
v�=
(
F �x�

F �
v�
)N−1

�
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Therefore, the set of all possible beliefs Wt can be parametrized by ��(� 
v�� ∈ �0�1	2, and the transition
depends on b1 (through both ( and 
v) and b2 (trough (). We can assume WLOG that all agents know
not only W , but also its coordinates �(� 
v�, the second coordinate is just the upper bound of W ’s
support, and the first coordinate is known because H1�x � x < 
v� and H2�x � 
v� are both known, so the
agent can solve for ( given W . We will therefore write the bidding strategies as bi�v � (� 
v�≡ bi�v �W�.
The transition in terms of the coordinates is:


vt+1 = b−1
1 �pt � (t� 
vt�

(t+1 =
gold�pt � (t� 
vt�Gnew�pt � (t� 
vt�

gold�pt � (t� 
vt�Gnew�pt � (t� 
vt�+ gnew�pt � (t� 
vt�Gold�pt � (t� 
vt�
�

where the (transition follows from Bayes Theorem: g’s are the distributions of maximum old-bidder
bid gold�b � Wt� and maximum new competing-bidder bid gnew�b � Wt�. Clearly, the transition of ( is
quite involved, with G involving derivatives of both bidding functions:

(t+1

1−(t+1
= w�b−1

2 �pt � (t� 
vt��H1�b
−1
1 �pt � (t� 
vt����db

−1
2 �pt � (t� 
vt��/db�

h1�b
−1
1 �pt � (t� 
vt����db

−1
1 �pt � (t� 
vt��/db�W�b−1

2 �pt � (t� 
vt��

There are three regions depending on whether or not the new or old bidders could have won:

pt > b1�1 � (t� 
vt� → 
vt+1 = 1� (t+1 = 1

b2�
vt � (t� 
vt� < pt < b1�1 � (t� 
vt� → 
vt+1 = b−1
1 �pt � (t� 
vt�� (t+1 = 0

pt <min�b2�
vt � (t� 
vt�� b1�1 � (t� 
vt�	 → 
vt+1 = b−1
1 �pt � (t� 
vt�� (t+1 = as above

Therefore, very high prices lead to the starting state �1�1�, and there are prices that indicated that a
new bidder won for sure, as stated in the main text of the paper.
Given the above learning, the seller maximizes the net present value of profits �, starting by

assumption in state Q. Therefore, the steady-state profitability of any state W is captured by Bellman
equations analogous to those of the basic model:

��W�= max
�sell�not sell�

�E�p+ ���T �W � p��	− c����Q���

To obtain a continuous selling function 1, one can assume that the production cost c is a temporary
random shock drawn in the beginning of each period, and a private information of the seller: Given c,
every state W is mapped into the selling decision, with selling whenever the expected contempo-
raneous revenue exceeds the marginal cost of production plus the discounted net effect on future
profits, i.e. whenever E�p� > c+����Q�−E���T �W � p��	�. The selling probability 1 (from the bidders’
point of view) then arises as the probability that the future draw of c is low enough for the selling
condition to be satisfied. Finally, the demand-supply market equilibrium is characterized jointly as a
triple of functions �1�W�� b11 �v �W��b12 �v �W�	, all satisfying their respective best-response conditions.
The exact properties of these functions under specific distributional assumptions can be numerically
approximated by simulation because the space of beliefs can be parametrized to the unit square.

EC.7. Proof of Proposition 3
Proposition 3. For every pair of selling-probability functions 1 and 2 such that 1 involves less selling

than 2 in every state: 1�w� <2�w� ∀w ∈ �0�1	2, the new bidders bid more as their best response to 1 than to
2& b11 �v� > b21 �v� ∀v ∈ �0�1	.

Proof. This proof derives the bidding strategy of new bidders, from which the claim follows imme-
diately. For the purposes of the proof, it is convenient to redefine the transformation T in terms of the
implied upper bound on surviving bidders’ valuations: T �Wt � x� ≡ T �Wt � x = b−1

1 �pt � Wt��. Also, let
Y1 ∼ F1 be the distribution of the valuation of the highest randomly-selected competing bidder within
a generation (highest of N −1 iid bidders), and let �Y2 � Y1�∼ F2�� � Y1� be the conditional distribution of
the valuation of the second highest competing bidder within a generation given the valuation of the
first highest competing bidder. Consider a new bidder with particular v in state W , and suppose that
the other N −1 new bidders bid according to b1�� �W�, while the remaining old bidders bid according
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to b2�� �W� (which obviously exists, and is increasing in valuation). Assume that 1�(� 
v� is continuous
and nondecreasing in 
v. By playing b1�z �W�, the focal bidder (called “I ” from here on) with valuation
v earns positive expected surplus in three situations that differ in the amount of surplus earned and
in the implied state tomorrow:
(1) Surplus v− b1�z �W� if I win now , i.e. when z > y1 & b1�z �W�>max�b2 �W�.
(2) Surplus �1�T �W � y1���v−b2�v � T �W � y1��	 if the highest competitor in my generation wins today

(and thus exits), and I beat both my second highest competitor tomorrow and tomorrow’s new bidders,
i.e. when: z < y1 & y2 <v & b1�y1 �W�>max�b2 �W� & b2�v � T �W � y1�� >max�b1 � T �W � y1�	.
(3) Surplus �1�T �W � b−1

1 �b2�m�����v− b2�v � T �W � b−1
1 �b2�m����	 if the highest old bidder wins today,

and I beat both my highest new competitor and tomorrow’s new competition, i.e. when b1�z � W� <
max�b2 �W� & v > y1 & b2�v � T �W � b−1

1 �b2�m���� >max�b1 � T �W � b−1
1 �b2�m���	.

The objective function in terms of z is:

�1�z�v� = W�g�z��F1�z��v− b1�z �W�	+ �
∫ 1

z
1�T �W � x��W�g�x��H1�g

−1�v� � T �W � x��
· F2�v � x��v− b2�v � T �W � x��	 dF1�x�

+ �
∫ 1

g�z�
1�T �W � g−1�m���F1�min�g−1�m��v��H1�g

−1�v�T �W � g−1�m���

· �v− b2�v � T �W � g−1�m���	 dW�m�

where

W�x�= �(H1�x � Y1 < 
v�+ �1−(�H2�x � Y1 = 
v�	� g�z�= b−1
2 �b1�z�� ⇒ g−1�z�= b−1

1 �b2�z��

The first-order conditions, with z= v applied after maximization of �1�z�v� to reflect a symmetric
equilibrium, lead to a differential equation for b1�v �W� in terms of the probability of winning the first
period 7�v �W�=W�g�v��F1�v�:

b1�v �W�=
∫ v

0
�x− �1�T �W � x��H1�g

−1�x � T �W � x����x− b2�x � T �W � x��		 d7�x �W� x < v�

The equation for b1�v � W� describes the bidding strategy only implicitly because g is a function of
both bi. Nevertheless, it is evident that an decrease in 1 leads to an increase in b1and vice versa,
as claimed in the Proposition. Also notable is the phenomenon of bid-shading: single-shot first-price
sealed-bid strategy would just be

∫ v

0 x d7�x �W� x < v� > b1�v �W�. Finally, it should be pointed out
that the strategy in Milgrom and Weber (2000) is a special case of b1�v �W� with �= 1=H1 = 1, and a
particularly convenient form of b2 made possible by the lack of second-period entry. �
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