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Marketers often analyze multinomial choice from a set of branded
products to learn about demand. Given a set of brands to study, the
authors analyze three reasons why choices from strict subsets of the
brands can contain more statistical information about demand than
choices from all the brands in the study: First, making choices from
smaller subsets is easier, so it is possible to use more choice tasks when
the choice data come from a choice-based conjoint survey. Second,
choices from subsets of brands better identify and more accurately
estimate the covariance structure of unobserved utility shocks
associated with brands. Third, subsets automatically balance the brand
shares when some of the brands are less popular than others. The
authors demonstrate these three benefits of subsets using a mixture of
analytical results and numerical simulations and provide implications for
the design of choice-based conjoint analyses. They find that the optimal
subset size depends on the model, the number of brands in the study,
and the designer’s resource constraint. In addition to showing that
subsets can be beneficial, this article provides a simulation methodology
that helps designers pick the best subset size for their setting.
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Statistical Benefits of Choices from Subsets

To learn about consumer demand, market researchers
often analyze multinomial choice from a set of branded
products. For example, the discrete choice conjoint analysis
technique analyzes consumer choices from different sets of
hypothetical product profiles described by their brands,
prices, and other attributes (Louviere, Street, and Burgess
2003). Given a fixed set of brands, a key survey design
question arises: How many brands should each choice task
include to maximize the demand information contained in
the data? From a purely statistical point of view—that is,
assuming that standard random utility models accurately
portray questionnaire respondents—including all brands in
each choice set would seem to provide the most informa-
tion about demand. In other words, excluding brands from
choice sets may seem like throwing away potentially useful
data. We analyze statistical properties of standard choice
models and find that this intuition is incomplete: Choices
from random subsets of the considered brands can be sta-
tistically more informative than choices from all the
brands.

There are at least three reasons why a choice-based con-
joint survey of branded products can produce more infor-
mation about demand by offering respondents choices from
random subsets of brands than by offering them choices
from all brands under study. The most important reason is
also the easiest to explain: Choices from smaller sets are
easier and faster, so the survey with smaller choice sets can
use more choice tasks. Specifically, the decision theory lit-
erature (Bettman, Johnson, and Payne 1990) implies that
the ease and speed of making a choice are approximately
linear in size of the choice set. This result implies that the
designer can use more choice tasks as long as the total
number of profiles each respondent needs to process
remains the same. Under this realistic constraint, we show
analytically for the multinomial logit (MNL) model and
numerically for the multinomial probit (MNP) model that
randomized strict subsets allow sufficiently more tasks to
improve demand estimation while keeping the survey time
and difficulty perceived by respondents constant.

Coupling smaller subsets with more choice tasks per
respondent is not necessary for subsets to be beneficial. We
document two reasons why choices from random subsets of
the considered brands can be statistically more informative
than the same number of choices from all the brands: vari-
ance estimation and autobalancing. The variance estimation
benefit is specific to models, such as the MNP, that allow
for correlated random utilities. Subsets can improve vari-
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ance and covariance estimation because they provide exclu-
sion restrictions (Keane 1992). The variance–covariance
terms specific to brands absent from any given task are
excluded from the likelihood of that task, allowing that task
to better estimate the rest of the parameters. For example,
consider three cafés with their respective market shares as
follows: Starbucks (50% share), Peet’s (25% share), and
Bob’s (25% share). The Starbucks share advantage could
be due to the latter two cafés having weaker brands or to a
positive correlation between their random utility shocks. A
way to resolve this question is to assume correlations away
in the model (e.g., by assuming the MNL) and attribute dif-
ferences in shares solely to brand partworths. This is the
familiar independence of irrelevant alternatives (IIA)
assumption (Currim 1982; Huber and Puto 1983; Tversky
and Simonson 1993). However, incorrectly assuming IIA
has adverse implications for marketing strategy, such as
cross-effects of marketing mix or competitor entry
(Allenby and Lenk 1994, 1995; McCulloch and Rossi
1994), and so allowing correlations of utility shocks in the
model is desirable. Although the aforementioned shares
alone do not identify such a model, shares in subsets help
disentangle the two possible explanations for Starbucks’s
share advantage: Suppose that Bob’s closes down, and the
resultant shares in the subset are 50–50 between Starbucks
and Peet’s. The correlation of random utilities would
explain the full-set shares—perhaps (and unknown to the
analyst) Bob’s and Peet’s are similar local brands. How-
ever, if the subset shares are 2:1 in favor of Starbucks, then
Peet’s café simply has a weak brand (and the shares happen
to exhibit IIA). The café example shows that subsets
together with the full set improve both identification and
estimation. We build on this result and prove that subsets
improve identification and estimation even without the data
on full-set choice shares. We provide analytical results
using simple examples and then conduct a set of simulation
experiments to demonstrate the effect on a larger MNP
example.

The autobalancing benefit operates whenever the study
includes relatively inferior brands that are rarely chosen
from the full set of K brands. Subsets can improve esti-
mates of small-brand partworths because inferior brands
are chosen more frequently from subsets than from the full
set. Kuhfeld, Tobias, and Garratt (1994), Huber and Zwe-
rina (1996), Arora and Huber (2001), and Sandor and
Wedel (2001) demonstrate that balancing utilities of the
profiles in a choice task can improve estimation precision.
They advocate constructing balanced profiles given a fixed
choice-set size, which requires prior information about
partworths. Balancing by subsets does not require prior
information or even qualitative knowledge about which
brands are dominated. Instead, useful balancing can occur
automatically through randomization, and even completely
randomized subsets can be beneficial. To demonstrate the
autobalancing benefit, we again show its existence analyti-
cally for a small example and then conduct an extensive
simulation study to verify generalizability to larger models.
Throughout, we document the autobalancing benefit for the
MNL that cannot benefit from variance estimation by con-
struction, and thus we show that the two benefits are dis-
tinct. We find that using random subsets is optimal when-
ever more than eight brands are in the study, more than half

of them are dominated, few are nonbrand attributes, and
brand effects are strong. Unlike the other two benefits, the
autobalancing benefit thus only occurs in specific situa-
tions. Without the help from one of the other two benefits,
autobalancing alone often does not justify the use of
subsets.

Our analysis of the three benefits of subsets indicates
that smaller subsets are not always more informative than
larger subsets. Therefore, pairs are rarely optimal for stud-
ies of five or more brands. Instead, the optimal subset size
is usually an interior solution, which depends on the par-
ticular model, example, objective function, and resource
constraint of the analyst. We provide several rules of thumb
for choice-based conjoint designers, plus a simulation
methodology that can be applied to specific settings. We
also conduct a counterfactual simulation of a real-world
conjoint analysis by first estimating the parameters of a
hierarchical Bayes MNP (HB-MNP) model using data pro-
vided by Sawtooth Software and then simulating counter-
factual data sets for all possible subset sizes the designer
could have used. We find that parameter heterogeneity
blunts the benefits of subsets and that the HB-MNP model
usually gains less from subsets than the homogeneous
MNP. Nevertheless, strict subsets remain optimal under the
realistic resource constraint on the total number of profiles
per respondents, and double-digit increases in measurement
accuracy are possible for both the population-level model
parameters and key posterior predictive measures, such as
brand equity.

In this article, we assume that conjoint respondents
adhere to the assumed random utility models. However,
real-world respondents tend to violate these assumptions:
People facing large choice sets switch their decision-
making strategies from careful compensatory assessment
(assumed by standard choice models) to simplifying heuris-
tics (Gilbride and Allenby 2006; Payne, Bettman, and
Johnson 1988). Therefore, random utility choice models
are more likely to fit actual choice better for smaller sub-
sets, resulting in “cleaner” data (DeShazo and Fermo
2002). These behavioral benefits complement the statistical
benefits we discuss here, further strengthening the case for
using subsets in choice experiments. Pinnell and Englert
(1997) focus on the behavioral benefits and find that pairs
are not necessarily better in out-of-sample predictive per-
formance than septuplets, even when the out-of-sample
tasks are also pairs. Therefore, the question whether small
choice sets are immune from heuristics is by no means set-
tled in conjoint practice.

We motivate our investigation with the example of
branded products. Associating random utility shocks with
brands is standard in MNP models of consumer choice
(Elrod and Keane 1995; McCulloch and Rossi 1994). Our
finding generalizes to any categorical attribute with K lev-
els, such that each choice set corresponds one-to-one with a
subset of the K levels. For example, transportation studies
of commuting behavior often involve K modes of transport
such as {train, bus, car, walk}, with each respondent facing
a choice from either all the modes or a subset of the modes
(Ben-Akiva and Lerman 1985). Note that brand is never-
theless a special attribute because it is difficult to decom-
pose. In the café example, suppose that the designer
observes the “localness” attribute that gives rise to the
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unobserved similarity between Bob’s and Peet’s. The
designer may not be able to control for localness explicitly
in the questionnaire (and, thus, to justify i.i.d. errors)
because it may be too inherent in the brand identities: The
respondents may not be able to imagine a “local Starbucks”
or “national leader Bob’s.”

We organize this article as follows: First, we summarize
our theoretical results and develop the reader’s intuition for
the benefits. Second, we test the variance estimation benefit
on a particular homogeneous MNP example. Third, we
generalize the model to HB-MNP and use real-world data
to calibrate the parameters. We find consistent evidence to
support subset benefits due to resource constraints and vari-
ance estimation, but the benefit of autobalancing depends
on moderating conditions. Therefore, fourth, we set out to
better characterize when autobalancing would be expected
to operate. The results lead to useful rules of thumb, and
they also explain why large benefits from autobalancing are
relatively rare. Finally, we discuss the results, their implica-
tions for practice, and fruitful directions for future work.

THEORY: TWO CONSTRAINTS AND TWO BENEFITS

Throughout this article, we focus on a specific random util-
ity model structure commonly used in discrete choice
analysis (DCA): There are K brands to study and N choice
tasks (observations). The nth choice task consists of a sub-
set Cn of the brands {1, 2, …, K}, and Sn is the cardinality
of Cn, where 2 ≤ Sn ≤ K. When brand k is not in Cn, there
is no alternative for brand k. For choice task n and brand k
in Cn, the random utility Unk is as follows:

where αk is the partworth for brand k, Xnk is a row vector
of nonbrand attributes of length B, β is a column vector of
regression coefficients, and εnk is a zero-mean random util-
ity term. In this section, we focus on the homogeneous
model to derive analytical results about the information
content of subsets. In the homogeneous model, the parame-
ters αk and β are common to all respondents. The MNL
assumes that {εnk} are independent draws from the Gumbel
distribution. Common identification constraints set αK and
XnK to zero.

In the MNL, gaining analytical insight into the relation-
ship between subset size and estimation accuracy of αk and
β is possible through the Fisher information matrix.
Asymptotic standard errors are the inverse of the Fisher
information. To simplify the analysis, we assume that each
choice task has the same number of profiles: Sn = S, where
1 ≤ S ≤ K. Let IS

K
be the Fisher information matrix associ-

ated with random subsets of S brands from a total of K
brands. The Fisher information matrix is the sum of task-
specific negative Hessians over the N tasks: IS

K(α, β) = Σn –
Hn(α, βCn), where each single-task Hessian depends criti-
cally on the following vector of probabilities pS

k
that brand

k is chosen from a choice set that contains randomly
selected S brands:
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Note that this shorthand notation suppresses the p’s
dependence on task index n through their dependence on
Xnk. Given pS

k
, the single-task Hessian is relatively easy to

write. It has (K – 1 – S) zero columns (and rows), corre-
sponding to the brands absent from the choice set Cn. Let
χj(Cn) be a binary indicator of whether brand j is in Cn; that
is, let χj(Cn) = 1 iff j ∈ Cn, and χj(Cn) = 0 if otherwise.
Then, the negative Hessian –Hn

S(α, β) has the following
entries:

where ββ is a column vector and the last term is a matrix.
Furthermore, Ep(Xn) is the  p-weighted mean of the Xnk
vectors present in the task n, so the negative  single-task
Hessian is just a  p-weighted variance matrix of the
 alternative-specific design vectors present in Cn (for a
demonstration, see the Appendix). Specifically, the  (K –  1) ×
 (K –  1) submatrix –H(α, α) is the variance matrix of a 
 (K –   1)-dimensional multinomial distribution with proba-
bilities {pS

k
}.

The determinant (also called  “D-criterion”) and the trace
(also called  “A-criterion”) of IS

K
are two commonly used

scalar summaries from the experimental design literature.
In general, analytical evaluations of the determinant and
trace of Equation 3 are difficult because of the different
Xnk vectors entering different tasks. We assume that Xnk is
zero, and the only parameters to estimate are the  (K –  1)
 brand-specific intercepts αk. When these are perfectly bal-
anced, αk = 0, and then pS

k
= 1/ S for all k. The Fisher infor-

mation then becomes tractable because the probability does
not depend on the particular subset, only on the subset’s
cardinality S. The following lemma summarizes the infor-
mation as a function  of S:

Lemma 1: Suppose that the MNL involves K brands and no
other attributes. When all K brand intercepts have
the same value, the determinant and trace of the
Fisher information have the following closed  form:

and

For a detailed proof, see the Appendix. Equations 4 and 5
lay the groundwork for our analysis of the manager’s
resource  constraint.

The Effect of Resource Constraint: Realistic Versus
 Conservative

Suppose that the manager running a DCA needs to pay
the respondents for the opportunity cost of their time.
When the respondents find choices from smaller sets to be
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easier and faster, smaller subsets can be beneficial because
they allow the manager to use more tasks per respondent in
the same amount of time. Bettman, Johnson, and Payne
(1990) measure the speed of choice in controlled experi-
ments and find that it can be additively decomposed into
the time requirements associated with elementary informa-
tion processes, such as reading, adding, multiplying, and
comparing. The compensatory decision process that stan-
dard choice models assume is analogous to Bettman, John-
son, and Payne’s weighted additive rule, which needs
S(K + B) multiplications, S(K +  B –  1) additions, and S
comparisons to make a choice from S profiles described by
up to K brands and B nonbrand attributes. Therefore, the
time needed to make a choice from a subset of S profiles
increases linearly in S, and the manager faces an implied
constraint on the total number of profiles P = NS that each
respondent needs to process. Bettman, Johnson, and Payne
also show that the time correlates closely with the respon-
dents’ subjective assessment of effort. Therefore, a
manager concerned with keeping the perceived effort con-
stant will also keep the total number of profiles the same.
Bettman, Johnson, and Payne’s linearity result clarifies
exactly how many more choice tasks are possible with
smaller subsets: When a DCA questionnaire is limited to P
total profiles across all questions, there can be N = P/ S
tasks with S profiles  each.

In contrast, if making a choice from fewer profiles is not
easier for the respondents than a choice from more profiles,
the designer of the study faces a constraint on the number
of tasks (choice observations) per respondent. This con-
straint is more conservative than the realistic constraint
grounded in data on consumer behavior. The simple
 intercept-only case of the MNL discussed in Lemma 1 can
be used to demonstrate that these two resource constraints
can have different implications for the usefulness of 
subsets.

P1: Under the assumptions of Lemma 1 and for both the trace
and the determinant criterion, the manager constrained to a
constant number of choice tasks per respondent learns the
most about demand from  K-tuples as choice sets. In con-
trast, the manager constrained to a constant number of pro-
files learns the most from  pairs.

This proposition follows from Lemma 1. When N is held
fixed, both the determinant and the trace in Equations 4 and
5 are functions of  (S –  1)/ S =  1 –  1/ S, which increases in S.
When P is held fixed and there are N = P/ S choice tasks,
the situation reverses: The determinant becomes propor-
tional to  [(S –  1)/ S2] K –  1 and the trace to  (S –  1)/ SK, both
of which are decreasing  in S.

P1 illustrates that subsets are more likely to be beneficial
under the realistic constraint on the number of profiles than
under the conservative constraint on the number of tasks.
Notably, we find that subsets can be beneficial even under
the conservative constraint. This finding is somewhat
counterintuitive because using only S brands per task is the
same as reducing the number of observations in the latent
regression of U on X and brand dummies. If the manager
facing a constraint on number of tasks could observe the
utilities Unk directly, he or she would never prefer a strict
subset size S < K. As a result of the peculiar properties of
choice data, subsets can benefit estimation even under the

stronger constraint of constant N. Subsets can be beneficial
in this case for two reasons: variance estimation and auto-
balancing. We discuss the two reasons in  turn.

Variance Estimation Benefit in MNP

Unlike the MNL, which assumes away correlations of
the utility shocks εn,k, MNP assumes that the shocks are
draws from a multivariate normal distribution: (εn,1, …,
εn,K –  1) ~ N(0, Σ). For identification, MNP fixes UK = 0
and σ11 = 1 (McCulloch and Rossi 1994). Given this iden-
tification strategy, allowing the Kth alternative to be the
outside alternative is natural. The  (K –  1) ×  (K –  1) covari-
ance matrix Σ is usually interpreted as a measure of unob-
served similarities between pairs of “inside”  brands.

Strict subsets can be beneficial to the estimation of Σ
even under the more conservative constraint (constant num-
ber of choice tasks) because they imply exclusion restric-
tions in the likelihood. A simple trinomial (K = 3) example
illustrates this point by showing that strict subsets improve
identification. Consider the MNP with two brands (i.e.,
“inside alternatives”), A and B, plus one outside alternative
C. Let αA and αB be the partworths for A and B. Assume
that the error variances are σAA = σBB = 1 and that the
error covariance is σAB = ρ. Assume further that no non-
brand attributes exist. Therefore, we need to estimate only
three parameters: {αA, αB, ρ}. In this example, a striking
benefit of subsets  arises:

Example 1: The trinomial probit model with two brands, with-
out nonbrand attributes, and with σAA = σBB = 1 is
not identified when the choice sets are triples (S =
K = 3), but it is identified when the choice sets are
random pairs (S = 2) and the two brands are not
identical (αA ≠  αB).

The algebraic proof is available in the Appendix, but its
key ideas can be easily cast in the café story, where A =
Peet’s, B = Bob’s, and C = Starbucks. When all three cafés
are in the choice set, the model cannot be identified,
because choices from the full {A, B, C} choice set reveal
only two nonredundant pieces of information: share of A
and share of B. These two pieces of information cannot
separately identify the three parameters of the model. Now
consider the choices from the three possible pairs of cafés,
each providing a separate piece of information for the esti-
mation: The share of A in {A, C} is increasing in αA, and it
does not depend on any other parameters. Therefore, the
share of Peet’s café in a market without Bob’s café pins
down the value of Peet’s brand uniquely. Analogously, the
share of Bob’s café in a market without Peet’s café pins
down the value of Bob’s brand. Finally, only the shares in
{A, B} depend on the correlation ρ. When αA = αB, the
share of A in {A, B} is 1/2 for every ρ, so ρ is not identi-
fied. However, when αA ≠ αB and one brand is even
slightly preferred (WLOG αA > αB), it can be shown that
its share increases with ρ. Intuitively, as ρ increases, the
errors εn,A and εn,B contain a greater common component,
which cancels out the utility comparison that determines
the choice: Un,A > Un,B ⇔  αA –  αB > εn, B – εn,A.

If the data consisted of repeated observations of shares
for {A, B, C} along with sufficiently varying nonbrand
attributes {Xnk}, the designer could identify the model for
{αA, αB, β, Σ} even by full subsets. Though less stark than
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in Example 1, the improved and more direct identification
benefit of subsets would remain even in such a standard
model with nonbrand attributes. A way to interpret the
benefit is that subsets make practical the semiparametric
“identification at infinity” argument of Chamberlain
 (1986).

The foregoing argument for improved identification with
subsets generalizes beyond the case of pairs in a trinomial
probit. The argument actually simplifies as a result of a
combinatorial explosion: A  K-nomial  intercept-only probit
with unit diagonal of Σ has K choose S subsets of size S
but only K choose 2 parameters:  K –  1 intercepts and  K –  1
choose 2 correlations. Therefore, the number of identifying
equations rises faster than the number of parameters as K
increases. In particular, the unit diagonal of Σ is not neces-
sarily required for identification when K ≥ 6 and  S = 3.

This subsection has analyzed the benefit of subsets for
identification of MNP parameters. We expect that improved
and more direct identification should lead to more precise
estimation of the model parameters, but analytical results
on estimation precision are difficult to obtain for the MNP.
Therefore, we turn to simulations to check the intuition and
gauge the magnitude of the benefit, while also considering
K > 3 and Xnk ≠ 0. Before describing our simulation
results, we propose a second benefit of subsets unrelated to
variance  estimation.

Autobalancing  Benefit

In this subsection, we show that subsets can still benefit
the estimation of standard choice models even when the
covariance structure of εnk is assumed (as in the MNL)
rather than estimated. The subsets then benefit by automati-
cally evening out the overall choice shares across tasks, so
we call the improvement an autobalancing benefit. We
develop the argument using the MNL because we can
express its estimation accuracy in closed form, but we
expect the benefit to also hold in an MNP with a fixed and
 known Σ.

In the binary logit (K = 2), the Fisher information matrix
is as  follows:

Here, pn is the probability of Option 1 given Xn—a row
vector of nonbrand attributes. If we actually observed the
latent utilities Un = α + Xnβ + εn, where εn ~ N(0, 1), the
Fisher information would  be

A comparison of the two information matrices implies that
at least three-quarters of the information is lost in the
choice data relative to the latent linear regression, and how
much is lost depends on how close pn is to 1/2, where 
pn (1 –  pn) attains its maximum. How does this intuition
generalize to  multiple-choice  models?

I
X

X X X
n

n n nn

N

Reg α β, .( ) =
′ ′











=

∑ 1

1

where� � p
X

Xn
n

n

=
+( )

+ +( )
exp

exp
.

α β
α β1

I p p
X

X X Xn n
n

n n nn

N

Logit α β,( ) = −( )
′ ′











=

1
1

1
∑∑ � ,�

In MNL, the Fisher information takes an appealing form
with a slight change of notation. Let pk,n be the probability
of choosing brand k in choice task n, and let ϕ = (α1, …,
 αK –  1, β′)′ be the full coefficient vector (so the utility of k
is wk,nϕ, where wnj = [0, …, 0, 1, 0, …, 0, xnj] is a  K –  1 +
B row vector of both the brand and nonbrand attributes).
The MNL Fisher information  becomes

If we actually observed the latent utilities Un = Wnϕ +
εn, where εn ~ NK(0, I), the Fisher information would be
the information matrix of a multivariate  regression:

As in the case of the binary logit, the comparison of
IMVR with IMNL reveals the information loss due to only
observing choice: The kernel in IMNL tends to
become small (trace =  1 –   p1

2 –  … –  pK
2) compared with

the identity matrix, resulting in a large degradation in infor-
mation for larger subset sizes. Can smaller choice sets actu-
ally provide more information with the same number of
tasks? To answer these questions, we first consider the sim-
pler  intercept-only case. The next example demonstrates
that the  intercept-only MNL can benefit from subsets, even
under the conservative resource constraint when different
brands have different  values.

Example 2: Suppose that the MNL involves K = 3 brands and
no other attributes. Fix α3 = 0 for identification.
Based on the determinant of the information
matrix, the model is more precisely estimated with
N random pairs than with N triples whenever
Brands 1 and 2 are sufficiently dominated, such
that α1 ≤  α2 < –(5/2). Based on the trace of the
information matrix, the model is more precisely
estimated with N random pairs than with N triples
for all α1 and  α2.

The example is worked out in the Appendix. Recall that
in P1, the model is estimated more precisely with N full
choice sets of size K than with N random subsets of size S
given that the intercepts are equal to zero. Example 2 is dif-
ferent from the case in Lemma 1 and P1 in that two of the
brands are dominated by the outside good or Brand 3.
When α1 =  α2 = – (5/ 2), the share for Brand 3 is 86%. The
key intuition for why pairs are better than triples is that
when the choice task consists of the dominated brands, the
probabilities are close to 1/2, which maximizes the Fisher
information in that task. When the choice set is all three
brands, the dominated brands contribute little to informa-
tion. As the information is added over tasks, the pairs that
happen to exclude the dominant alternative can more than
compensate for the loss of information arising from the
pairs that include it (and thus are even less informative than
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the remainder of the article, we use numerical simulations
to assess their likely incidence and magnitude in  practice.

VARIANCE ESTIMATION BENEFIT: SIMULATION
RESULTS FOR THE  MNP

 Method

The “Theory” section shows that choices from random
subsets can identify the parameters of an MNP better and
more directly than choices from full sets. We expect the
improved identification to accompany improved accuracy
of the parameter estimates. This section investigates our
hypothesis using simulations because  closed-form results
about MNP estimation errors are not available. The simula-
tions follow a 2 × 2 experimental design that varies which
constraint the manager is facing (fixed number of profiles
versus fixed number of choice tasks) and whether Σ is fixed
or estimated. We use the fixed Σ case to mimic the  MNL.

The model example we simulate consists of five brands
and one outside option (K = 6). The brand intercepts are
 αj = –.5 for j = 1, …, 5 and α6 = 0. We assume that the ran-
dom components of utility are multivariate normal with the
covariance matrix Σ set to have varied diagonal elements
between .6 and 1.2 and varied correlations  between –.5 and
.5. In addition to the brand intercepts, one randomly gener-
ated binary attribute Xnk is meant to represent an indicator
of brands being on sale [Pr(Xnk = 1) = 1/2]. Its regression
parameter is β = 1. We set U6 = 0 and σ11 = 1 for model
 identification.

For every subset size S = 2 to S = 6, we generate syn-
thetic tasks from the model and estimate the parameters
using the Gibbs sampler proposed by Zeithammer and

the full triple). This benefit is available even to a manager
who does not know which brand is the dominant one—
thus, the “auto” in our name for this benefit. If the manager
knows that Brand 3 is the dominant one, nonrandom sub-
sets will be beneficial more often. For example, it can be
shown that based on the determinant criterion, excluding
the dominant Brand 3 from half the tasks will be beneficial
whenever α1 ≤ α2 < log(1/  4) = –1.38 > –  (5/ 2).

The simple  intercept-only model is unrealistic, but it
enables us to make rigorous statements about the estima-
tion properties of the MNL. Two questions arise: First, how
is the “S = K is optimal when brands are equal” result
related to the  utility-balancing idea? Second, how does the
inclusion of nonbrand attributes in the model influence the
optimality of subsets? The first question can be answered
as follows: Fix S = K, and allow brand values αk to 
vary. The  utility-balancing literature would ask what the
distribution of brand values is that maximizes information 
when S = K. The answer would be that equal  brand values 
are optimal because pj = (1/ K) for j = 1, …, K maximizes
det(IK) = NK – 1 ΠK

j = 1Pj. This focus on the selection of
brands given a choice set size is different from our focus on
the selection of the best choice set size given brands. The
second question is more difficult to tackle analytically, but
showing that subsets can be more informative even with
nonbrand attributes is possible, especially when dominated
brands exist. To show this claim, we construct a third
 example.

Example 3: Suppose the MNL involves three brands and one
binary nonbrand attribute Xn, which is randomly
equal to 1 for exactly one of the alternatives in Cn
and equal to 0 for the other alternatives in Cn. Let
α3 = 0 and α ≡ α1 = α2. Then, there is a region of
the (α, β) parameter space in which N random
pairs are more informative than N triples (see
 Figure 1).

To construct the information matrix in Example 3, all
combinations of brands and nonbrand attributes must be
considered, which is exponentially difficult, thus limiting
analytical tractability. Figure 1 shows that the conclusion of
Example 2 is nevertheless robust to the inclusion of non-
brand attributes: When Brands 1 and 2 are sufficiently
dominated, pairs prevail over triples. As in Example 2, the
trace criterion makes subsets optimal more often, but not
always. Note that the case of β = 0 is not identical to
Example 1, because β is still estimated here instead of
being fixed to 0 as in the  intercept-only case: For example,
the boundary of the  darker-shaded (determinant criterion)
area intersects the α axis  around –2, whereas Example 1
requires  α < – (5/ 2) for pairs to be optimal. In this sense,
nonbrand attributes do not necessarily weaken the autobal-
ancing benefit of subsets when their effect is weak. How-
ever, Figure 1 clearly shows that nonbrand attributes with
larger partworths weaken the autobalancing benefit sub-
stantially: More dominated brands are needed for pairs to
be preferred to triples as |β|  rises.

The simple examples of this section show that subsets
are preferred to complete choice tasks when (1) the total
number of profiles is held constant in the study, (2) subsets
provide exclusion restrictions that improve the estimation
of variances and covariances, and (3) subsets provide auto-
balancing of utilities when there are dominant brands. In

Figure 1
WHEN ARE RANDOM PAIRS MORE INFORMATIVE THAN

TRIPLES IN A TRINOMIAL LOGIT?

Notes: The model has 3 brands and 1 nonbrand binary attribute; the
value of the dominant brand is fixed at zero. The shaded areas show the
regions in which random pairs are more informative than full triples: The
darker area is based on the determinant criterion, and the lighter area is
based on the trace criterion.
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Note to Figure 1: The model has 3 brands and 1 non-brand binary attribute, the 
value of the dominant brand is fixed at zero.  The shaded areas show the regions in 
which random pairs are more informative than full triples: the darker area is based 
on the determinant criterion, the lighter area is based on the trace criterion. 
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Figure 1: When are random pairs more informative than triples in a trinomial logit?
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Lenk (2006). We set the conservative constraint to N =
2000 tasks and let the realistic constraint on the number of
profiles P = NS coincide with the conservative constraint in
the full S = 6 case. Therefore, the number of tasks under
the weak constraint increases proportionally from N = 2000
when S = 6 to N = 6000 when S = 2. To measure the infor-
mation content of different subset sizes, we calculate the
following posterior accuracy  measures:

• Standard deviation of the posterior distribution of each scalar
parameter θ = {αk, β,  σjk}.

• Mean square error (MSE) between true and predicted choice
probabilities in a  full-set (S = K = 6) holdout sample. We
compute the MSE in a single holdout task as  follows:

where is the mth draw of M total Markov chain Monte
Carlo iterations from the posterior  of θ.

• Standard deviation of two important posterior predictive
 distributions:

1. “Brand equity” is the change in share associated with setting
α1 to zero. In a single task,

2. “Sales lift” is the change in share associated with increasing
the utility of the first alternative by β. In a single  task,

For both the MSE and the posterior predictive measures,
we average over the holdout tasks. The first set of measures
enables us to study the effect of subsets on estimation accu-
racy in utility space, the second set of measures combines
the parameters together and translates them into the proba-
bility space but considers only the estimation of levels, and
the third set of measures evaluates the changes in probabili-
ties (i.e., changes in shares) as a function of changes in the
independent  variables.

Counterfactual questions, such as “How would our share
change if we did not have our brand?” or “How much
would our share rise if we promoted our product more?”
are often the reason companies conduct conjoint analyses
(Orme 2005). Therefore, we believe that the  differences- in-
probabilities measures are the most managerially relevant
because they represent answers to counterfactual questions
that are difficult to assess without a model. For example,
brand equity—“How would our share change if we did not
have our brand and everything else remained the same?”—
is one of the most important counterfactual questions that
marketers ask. Our measure of brand equity answers it
directly by focusing on market share. A direct antecedent
of brand equity in the utility space is α1—Kamakura and
Russell’s (1993) “brand value” measure. Our measure is
different from that of Goldfarb, Lu, and Moorthy (2009),
who ask the even deeper question of “How much of our
share is due to our brand?” To answer that question, they
need to model a change in equilibrium prices after setting
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α1 to zero, while we keep all X variables constant in the
counterfactual  simulation.

Given a design X and a set of parameters θ, we need to
integrate over the particular data and subset realizations to
measure the expected estimation accuracy and assess the
random variation around this average. To achieve this inte-
gration, we repeat the simulation 100 times for every sub-
set size. The exact algorithm we use is as  follows:

Initialization: Fix values of the parameters θ, priors on all
parameters (we use standard diffuse priors from
the literature), and the managerial constraint
(number of tasks or number of profiles). Then,
repeat the following 100 times (computational
details are in the Web Appendix at http://
www.marketingpower.com/ jmrdec09):

1. Draw N full  K-dimensional utilities Un and a design Xn for
calibration and  prediction.

2. For each subset size, S =  2, …, K.

a. Randomly select S of the K “brands” for each task n. The
outside alternative K is treated the same as any other alter-
native, so some subsets do not include  it.

b. Simulate the choices according to maximum utility for
each choice  set.

c. Use Markov chain Monte Carlo to generate draws from
the posterior distribution  of θ.

d. Estimate θ and compute predicted probabilities and per-
formance  measures.

 Results

Table 1 shows the results of our simulation study. Each
row of the table is normalized such that “100%” corre-
sponds to the full data case of S = K = 6 and N = 2000,
which corresponds to P = 12,000 profiles. The numbers are
average normalized accuracy measures; that is, we first
divide measure S by measure K within each repetition and
then average across repetitions. For completeness, Table
W1 in the Web Appendix (http:/ / www.marketingpower.
com/  jmrdec09) reports the actual average values of the nor-
malizing cases (S = K). In general, the normalizing values
are small because we selected moderately large designs
that estimate the models quite  well.

A few general impressions emerge from Table 1. Except
for the (Σ known, constant number of tasks N) case, sub-
sets provide benefits, and the optimal numbers of subsets
are usually interior solutions—not pairs or complete sets.
The benefits are greatest in the (Σ estimated, constant num-
ber of profiles) case, in which all three benefits of subsets
operate together. The optimal subsets depend on the accu-
racy measure, with triples “winning” the most often. The
(Σ estimated, constant number of tasks) case illustrates the
variance estimation benefit explored in the “Theory” sec-
tion. As we predicted, brand intercepts and covariance
parameters benefit robustly from subsets, with precision
improvements of  15%– 30%. As we also expected, a clear
 trade-off exists between the estimation of brand intercepts
α and attribute partworths β: The parameter on nonbrand
attributes benefits from subsets much less, and relatively
larger subsets estimate the parameter best. The (Σ fixed,
constant number of tasks) case reveals that the autobalanc-
ing benefit does not operate in the region of the parameter
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space we consider here. In the next section, we corroborate
this explanation by finding that at least in the MNL,  strong-
enough autobalancing should not be expected with K = 6
and small α. Finally, the two (Σ fixed) cases isolate the
main effect of the managerial resource constraint. The find-
ing echoes the MNL result that P1 discusses: Compared
with keeping the number of tasks constant, smaller subsets
are optimal when the manager needs to keep the number of
profiles constant. For such a manager, the optimal subsets
are not pairs as the stylized MNL example would predict,
because the model includes a nonbrand attribute. Notably,
the optimal subset size depends on the measure of posterior
precision in which the manager is interested, with smaller
subsets (triples) optimal and relatively more beneficial for
the precision of parameters and probability changes and
larger subsets (quintuples) optimal and relatively less bene-
ficial for the precision of the level of  probability.

A consistent result is that probability changes (sales lift
and brand equity) tend to benefit more from subsets than
probability levels (holdout predictions). An explanation for
this pattern can be gleaned from the trinomial café example
we discussed previously: The shares from the full market
consisting of {A, B, C} are good estimates of the levels of
shares in the same market tomorrow. However, making a
prediction about what would happen in a counterfactual
market, in which A lost the brand, is difficult. In the trino-
mial example discussed in the “Theory” section, this pre-
diction is actually impossible to identify. Given this intu-

ition and the simulation results, we conclude that subsets
tend to be more helpful in predicting counterfactual proba-
bility changes than in predicting probability levels. The
comparison of “sale lift” with “brand equity” clarifies that
the predictions of probability changes involving changing
brand utility values benefit more than predictions involving
only changing nonbrand attributes. The key role of Σ in the
former counterfactual drives this difference because the dif-
ference is present only when Σ is estimated (note that in the
 fixed-Σ cases, the precision of the two probability changes
is a function of subset  size).

The orthogonal design enables us to assess the interac-
tion between the benefit from variance estimation and the
benefit from the looser realistic constraint. We focus on the
posterior predictive measures (brand equity, sale lift, and
holdout fit), and we find almost no interaction in the sense
that for every subset size S, the precision improvement due
to the realistic constraint is approximately the same when Σ
is estimated as when it is fixed. An exception to this pattern
is the brand equity measure, which benefits from the realis-
tic constraint less when Σ is  estimated.

APPLICATION:  HB-MNP DCA OF DEMAND FOR
PERSONAL  COMPUTERS

 Method

In this section, we test the extent to which the benefit of
subsets identified for homogeneous MNP models carry

Table 1
VARIANCE ESTIMATION BENEFIT IN MNP: THE EFFECT OF MANAGERIAL RESOURCE CONSTRAINT

Σ Estimated, Constant Number of Tasks Σ Estimated, Constant Number of Profiles

Subset Size (Number of Tasks) Subset Size (Number of Tasks)
Average Standard Deviation
of Posterior (Subsets = 100%) 2 (2000) 3 (2000) 4 (2000) 5 (2000) 2 (6000) 3 (4000) 4 (3000) 5 (2400)

Deterministic U Parameters α, β
α (brand intercepts) 80% 70% 75% 87% 50% 49% 63% 80%
β (binary attribute parameter) 142% 97% 86% 88% 91% 71% 73% 82%

Random Utility Parameters Σ
Variances 187% 103% 90% 89% 105% 74% 77% 84%
Correlations 164% 91% 77% 80% 111% 67% 66% 74%

Predicted Difference in Share
Sale lift of Brand 1 141% 108% 100% 99% 99% 80% 84% 99%
Brand equity 1 74% 61% 70% 88% 42% 44% 59% 79%

Overall Holdout Performance
(MSE, No Subsets = 100%)
MSE (true versus predicted probability) 689% 188% 115% 94% 281% 93% 78% 82%

Σ Known, Constant Number of Tasks Σ Known, Constant Number of Profiles

Deterministic U Parameters α, β
α (brand intercepts) 160% 122% 108% 101% 92% 85% 87% 93%
β (binary attribute parameter) 158% 123% 110% 103% 90% 86% 89% 94%

Predicted Difference in Share
Sale lift of Brand 1 168% 126% 112% 105% 104% 93% 98% 103%
Brand equity 1 161% 121% 109% 102% 86% 84% 88% 93%

Overall Holdout Performance
(MSE, No Subsets = 100%)
MSE (true versus predicted probability) 298% 186% 138% 109% 110% 100% 99% 96%

Notes: Except for the overall holdout performance, the table reports standard deviations of posterior distributions normalized such that the “full set” (S =
6 and N = 2000) is 100%. We first normalize for every repetition and then compute the averages shown. The standard errors of the means are all less than
1% for parameters, less than 3% for the posterior predictive probabilities, and rising from 2% to more than 20% for the normalized MSE as the subset size
decreases from 5 to 2. Bold font represents benefits from subsets, and the italicized bold numbers show the best subset size for every statistic of interest,
whenever there is a benefit from subsets.
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tribution of heterogeneity. The complete choice task size is
K = 6 with five brands and the outside good. For each
respondent, we generate P = 60 profiles. From these 60
profiles, we randomly construct choice tasks of various
sizes S = 2, …, 6, such that each brand appears, at most,
once in each choice task. Under the constant N constraint,
ten choice tasks exist, and P = 10 × S. Under the constant P
constraint, 60 profiles exist, and N = P/ S. We also generate
one holdout task per respondent for prediction. Next, we
use the individual parameters [αj, βj] and the estimated
error variance matrix Σ to generate new utilities Uj,k|t and
the discrete choice data. Then, we estimate the  HB-MNP
model with both estimated and known Σ and calculate the
posterior measures. We calculate the holdout MSE and
changes in probabilities at the individual level and then
average across respondents. Therefore, the changes in
probabilities correspond to predicted changes in share
while taking heterogeneity into account. We repeated this
exercise 100 times to obtain the numbers in Table 3 in the
same way as  Table 1.

 Results

Table 3 presents the results in the same format as Table
1. Note that Table 3 focuses on the  population-level
parameters [α, β], not on the  individual-level parameters
[αj, βj]. The Bayesian estimation procedure for  HB-MNP
enables us to examine the posterior distributions of the
 individual-level parameters as well. Specifically, we let the
first person actually have [α1, β1] equal [α, β] throughout
the simulations. We find that the pattern of gains is in the
same direction for the  individual-level [α1, β1] and the
 population-level parameters [α, β], but the benefits and
costs are muted for the first respondent (contact the authors
for details). A deeper analysis of  individual-level estimation
is beyond the scope of this article, but note that we com-
pute all posterior predictive probabilities at the individual
level, so the brand equity,  sales lift, and holdout measures
fundamentally stem from the  individual-level  estimates.

Table 3 confirms the pattern of benefits found in Table 1,
but the benefits are not as prominent for  HB-MNP as for
the homogeneous MNP. Under the conservative constraint
(constant number of tasks), we find that subsets benefit
only the estimation of Σ parameters and the precision of the
“brand equity” probability difference. The optimal subsets
for both are relatively large (quintuples). The variance esti-
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over to  HB-MNP with realistic heterogeneity. To achieve
this goal, we fit a  HB-MNP model to a real DCA study and
simulate counterfactual data sets with different subset sizes
as if the estimated parameters were the true parameters. We
use the same 2 × 2 experimental design as in the previous
section. Sawtooth Software provided the data for the con-
joint study, which involved 316 information technology
purchasing managers choosing personal computers. The
purchasing managers had five brands from which to
choose, plus the outside alternative (K = 6), and each
respondent was presented with eight choice tasks. Each
choice task consisted of three computer profiles, with each
brand appearing, at most, once in each  choice task. There-
fore, with the  “none- of-the above” outside option included
in every task, the choice sets were quadruples (S = 4). In
addition to the five brands, the study manipulated four dif-
ferent levels of price and three different levels of perform-
ance, warranty, and service attributes. In general, brands A
and B are considered premium brands, and brands D and E
are value  brands.

The key difference between the homogeneous models of
the previous section and the  HB-MNP is respondent
heterogeneity in parameters captured by a hierarchical prior
(Lenk et al. 1996). Specifically, if the jth respondent has
utility coefficients [αj, βj], we let [αj, βj] ~ N([α, β], Λ).
We assume that Λ is a diagonal matrix because with our
sample size, estimates of the full covariance matrix are sen-
sitive to the prior assumptions. The several levels of non-
brand attributes are coded as continuous variables normal-
ized between 0 and 1, so we measure their coefficients in
the units of utility (i.e., the standard deviation of the  first-
brand random component). The  population-level estimates
are in Table 2. The brand intercepts are ordered as expected
but are not dramatically different from one another. The
estimate of Σ reveals that brands {A, B, C} are relatively
similar to one another, and brand E is relatively dissimilar
from them. This finding confirms our intuitive understand-
ing of the similarities between the brands. The respondents
are (on average) price sensitive, and the most important
attribute is performance. We find a lot of heterogeneity in
price sensitivity and the  first-brand  intercept.

We modify the simulation procedure in the last section to
conduct the counterfactual simulation analysis with modifi-
cations for parameter heterogeneity. We generate 316
 individual-level parameters [αj, βj] from the estimated dis-

Table 2
PARAMETER ESTIMATES IN THE PERSONAL COMPUTER STUDY: MEAN OF THE POSTERIOR DISTRIBUTION

Deterministic Utility Parameters Variances and Correlations of the Random Utilities

Population
Population Standard brandA brandB brandC brandD brandE

Mean Deviation ε ε ε ε ε

brandA α –1.74 .86 1.00
brandB α –2.03 .50 .24 1.09
brandC α –2.27 .46 .15 .21 1.23
brandD α –2.54 .46 .15 .03 –.02 1.15
brandE α –2.87 .69 –.18 –.17 .29 .05 .98
price β –1.58 .82
performance β 2.70 .77
warranty β 1.14 .52
service β 1.27 .53

Notes: The nonbrand attributes are scaled to [0, 1].
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mation benefit still operates in that subsets are never opti-
mal in the known Σ case, whereas they are optimal at least
for some measures when Σ is estimated. Though less com-
pelling to a manager facing a conservative constraint, the
benefits of subsets are still present in that the accuracy does
not decline quickly as S decreases. For example, the sale
lift measure is only 5% less precise with quintuples than
with full  sets.

Because subsets improve the estimation of Σ more than
other parameters, we consider an additional managerially
relevant counterfactual issue that is especially sensitive to
Σ—namely, a competitor’s exit. Specifically, recalling the
three cafés example, correctly predicting the increase in A’s
share due to B’s exit depends on correctly estimating the
correlation of their random utilities. The results in Table 3
suggest a comparison between quintuples (optimal for Σ)
and sextuples (optimal for other parameters). We compute
the appropriate comparisons and report only the overall
findings in this paragraph. We make two comparisons: indi-
vidual and aggregate. On the individual level, the question
is whether the holdout MSE between true and predicted

probabilities (of choosing A without B in the market) is
lower with quintuples or with full sets. We find that this is
not the case; the MSE is 10% higher with quintuples.
Therefore, even a  double-digit improvement in the estima-
tion accuracy of Σ does not compensate for a  single-digit
reduction in precision of α when it comes to predicting
 individual-level probabilities. However, we find that the
posterior standard deviation of the change in share of A as
a function of B’s exit mirrors closely the behavior of the
brand equity measure. Therefore, the large improvement in
the estimation of Σ slightly improves the accuracy of the
aggregate  change- in-share measure. We suspect that the
difference between the benefit of subsets of [αj, βj] and [α,
β] and the nonlinearity of the probability function drive the
individual versus aggregate  difference.

The effect of weakening the manager’s resource con-
straint remains almost exactly as strong in Table 3 as in
Table 1. Therefore, a manager who faces the realistic con-
straint benefits robustly from subsets even when substantial
heterogeneity exists. Echoing the results in Table 1, pairs
are not the optimal subsets for any measure under consider-

Table 3
COUNTERFACTUAL BENEFIT OF SUBSETS IN THE PERSONAL COMPUTER STUDY (HB-MNP MODEL)

Σ Estimated, Constant Number of Tasks Σ Estimated, Constant Number of Profiles

Subset Size (Number of Tasks/Respondent) Subset Size (Number of Tasks/Respondent)

Standard Deviation of Posterior, (No Subsets = 100%) 2 (10) 3 (10) 4 (10) 5 (10) 2 (30) 3 (20) 4 (15) 5 (12)

Deterministic Utility Parameters α, β
Population Mean
α (brand intercepts) 178% 128% 108% 101% 105% 89% 88% 92%
β (attribute parameters) 198% 140% 115% 104% 118% 98% 95% 95%

Deterministic Utility Parameters α, β
Population Standard Deviation
α and β 197% 141% 118% 106% 110% 95% 95% 96%

Random Utility Parameters Σ
Variances 178% 116% 92% 83% 96% 78% 75% 76%
Correlations 145% 108% 94% 88% 97% 79% 78% 81%

Predicted Difference in Share
Sale lift of Brand 1 164% 125% 112% 105% 102% 94% 95% 98%
Brand equity 1 167% 119% 104% 99% 97% 85% 85% 93%

Overall Holdout Performance
(MSE, no subsets = 100%)
MSE (true versus predicted individual probability) 165% 136% 118% 108% 113% 100% 98% 99%

Σ Known, Constant Number of Tasks Σ Known, Constant Number of Profiles

Deterministic Utility Parameters α, β
Population Mean
α (brand intercepts) 154% 124% 111% 104% 93% 89% 91% 96%
β (attribute parameters) 152% 124% 112% 105% 96% 92% 94% 97%

Deterministic Utility Parameters α, β
Population Standard Deviation
α and β 152% 127% 114% 106% 95% 90% 93% 97%

Predicted Differences in Share
Sale lift of Brand 1 163% 128% 113% 106% 102% 95% 96% 99%
Brand equity 1 170% 128% 112% 104% 98% 91% 91% 97%

Overall Holdout Performance
(MSE, no subsets = 100%)
MSE (true versus predicted individual probability) 157% 133% 117% 107% 113% 100% 98% 99%

Notes: Except for the MSE, the table reports standard deviations of posterior distributions normalized such that the “full set” (S = 6) is 100%. We first
normalize for every repetition and then compute the averages shown. The standard errors of the means are all less than 2% except for MSE in the case of
very low S. Bold font represents benefits from subsets, and the italicized bold numbers show the best subset size for every statistic of interest, whenever
there is a benefit from subsets. N = 316. The normalization in each row is the same for both the constant tasks and constant profiles case: 100% = statistic
with 10 choice tasks per respondent, with S = 6.
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ation, strengthening the evidence against their use in prac-
tice. Again, the interaction between variance estimation and
constraint weakening is small: The manager who faces the
realistic constraint is better off than the manager who faces
the stronger conservative constraint, whether they both esti-
mate Σ or assume that it is known, as in  MNL.

AUTOBALANCING BENEFIT: SIMULATION RESULTS
FOR THE  MNL

 Method

The trinomial logit Examples 2 and 3 in the “Theory”
section prove that subsets can be beneficial in MNL esti-
mation due to autobalancing, even under the conservative
resource constraint. In the two sections for the MNP and
the  HB-MNP, the test of autobalancing is the known Σ
cases because variance estimation benefits do not apply.
We observe autobalancing benefits for fixed P but not for
fixed N when Σ is known, which implies an interaction
between autobalancing and the constraints. Thus, the con-
ditions for autobalancing warrant a more detailed examina-
tion. First, what are the designs in which autobalancing 
significantly helps? Second, when is the effect of autobal-
ancing large? To answer these questions, this section con-
ducts a  large-scale simulation study of the MNL (known
Σ), focusing on the determinant criterion  throughout.

We use the  closed-form expression for the Fisher infor-
mation for the MNL to examine a greater range of DCA
designs than was feasible with the MNP and  HB-MNP. We
consider the following design variables potential modera-
tors of the autobalancing effect: total number of brands
(K), proportion of dominated brands (denoted D), number
of tasks (N), number of nonbrand attributes (B = dimension
of β), and strength of the effects (absolute magnitude of α
and β). Given these variables, we ask two questions of
managerial relevance: First, how does the size of the opti-
mal data set depend on the design variables? Second, how
does the magnitude of the accuracy improvement from
using the optimal subset size depend on the design
 variables?

To manipulate the strength of the effects and the propor-
tion of dominated brands, we fix a proportion D of the
scalar elements of α  to – c and fix the remainder to c, where
c is a constant. To simultaneously control the strength of
the effects of nonbrand attributes, we set the scalar ele-
ments of β to evenly spaced numbers  between – c and c for
the same constant. Specifically, we set  β1 = – c,  β2 = – c +
2c/  (B –  1), ..., βB = c. Therefore, the constant c can be
interpreted as effect strength relative to the standard devia-
tion of the Gumbel utility shock, which is = 1.28. In
this sense, c = .5 are “weak” effects, c = 1 are “medium”
effects, c = 2 are “strong” effects, and so on. Table 4 gives
the values of the parameters we consider in a full factorial
study consisting of 3 × 2 × 3 × 4 × (3 + 7 + 11 + 15 + 19) =
3960  conditions.

For every combination of the design variables, we draw
a random X matrix with binary nonbrand attributes, vary
the size of random subsets S = 2, …, K, and compute the
 log-determinant of the Fisher information matrix. We use
the  log-transformation because the determinants are highly
skewed. To normalize across different simulations, we then
consider the ratio of the resultant  log-information in ran-
dom sets of size S to the  log-information in the  full-

π / 6

dimensional sets of size K. The information matrix depends
on the particular realization of the nonbrand attributes X
and on the particular subsets {Cn} of size S. To assess this
variability, we generate 100 X draws for every design set-
ting and draw different random subsets every draw. There-
fore, our study considers 396,000 different data sets. The
final measure we report and analyze is the expected relative
 log- information:

Results

To answer the first question about the optimal subset
size, we consider the 360 conditions arising from the facto-
rial design using all the variables in Table 4, except for S.
For each of the 360 conditions and each of the 100 simu-
lated data sets, we find the optimal subset size S*/ K. As
expected from theory and the MNP simulations, strict sub-
sets are not always optimal; we find that S*/ K < 1 in only
23% of the cases. In the remaining 77%, the designer is
best off with  full-dimensional choice sets. The number of
brands K is perhaps the most important moderator of auto-
balancing: We find that, at least within our range of the
design variables, random subsets are never optimal for K =
4, and the percentage of cases with optimal subsets then
rises with K to 11% (K = 8), 25% (K = 12), 35% (K = 16),
and finally 43% (K = 20). Given this observation that opti-
mality of strict subsets is not universal, we now turn to a
systematic investigation of which design situations make
strict subsets  optimal.

To analyze the  first-order effects of the design variables
on the optimal subset size, we run a simple linear regres-
sion of S*/ K on design variable dummies (for the output,
see Table W2 in the Web Appendix at http:/ / www.market
ingpower.com/ jmrdec09). The regression identifies three
key variables: Subsets are beneficial when there are more
brands (K higher), when there are fewer nonbrand attrib-
utes (B lower), and when the effects are stronger (c higher).
As we expected from Examples 2 and 3, the effect strength
variable c interacts positively with the ratio D of dominated
brands. The main effects and one interaction (c × D)
explain roughly half of the variation in optimal subset size
(R2 = .50). Approximately  one-tenth of the remaining
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Table 4
MNL SIMULATION STUDY: DESIGN AND A SUMMARY 

OF RESULTS

Effect on Benefit
Design Variable Values Considered of Subsets

Number of tasks N 500, 1000, 3000 None
Proportion of dominated 

brands D .5, .75 +
Number of nonbrand two-level 

attributes B 3, 5, 10 –
Strength of effects c .5, 1, 2, 3 +
Number of brands K 4, 8, 12, 16, 20 +
Subset size S 2, 3, …, K
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unexplained variation is due to variation across the 100
data sets within each condition (when we average the S*/ K
across the 100 data sets in each condition between regress-
ing, the  R-square of the resulting regression is .54). Finally,
approximately another half of the remaining variation after
pooling across the 100  data draws can be attributed to our
pooling across different K (running the pooled regressions
separately within each K yields an  R-square of approxi-
mately .7). These results suggest that the weak autobalanc-
ing benefit in Tables 1 and 3 for the constant number of
tasks and known Σ case is due to not having a sufficiently
large K and not having  strong-enough effects for autobal-
ancing to make strict subsets  optimal.

To answer our second question regarding effect size, we
regress the relative  log-information on subset size
(expressed as a proportion S/ K), squared subset size, and
the design variables. Table W2 in the Web Appendix again
shows the results (http:/ / www.marketingpower.com/
jmrdec09): Positive signs indicate positive benefit of sub-
sets, and vice versa. It is immediately clear that the most
important determinants of effect size are the same as those
in the  optimal-size regression we discussed previously.
Moreover, the magnitude of information gain/ loss clearly
depends on the number of brands, which generally
increases as the number of brands (K) increases. For exam-
ple, having ten versus three nonbrand attributes results in
an average  log-information loss of .6% with K = 4 and as
much as 7% with K = 20. The information gain due to
stronger effects exhibits a complicated  three-way interac-
tion with the percentage of dominated brands and the total
number of brands: The largest information gain seems to be
available when effects are strong, brands are many, and the
percentage of dominated brands is higher. Figure 2 illus-
trates this  interaction.

The results here suggest a few rules of thumb to design-
ers of choice experiments who intend to use the MNL in
analyzing their data. We find that relatively smaller subsets
are more informative than full sets under the conservative
resource constraint when the following  apply:

•There are many brands to evaluate (eight or  more),
•The study considers fewer nonbrand attributes (fewer than
 five),

•The effects are likely to be strong (utility partworths of
absolute magnitude of two or greater),  and

•The effects are likely to be strong, and a majority of the brands
are  dominated.

Unlike the other two benefits of subsets, the autobalanc-
ing benefit occurs only in specific situations. One of the
contributions of this article is to characterize when the
benefit operates. The optimal subset size depends on the
specific values of the design variables, and in general, it
stays above .8K. Although a few extreme conditions make
even smaller subsets optimal (for the situation K = 20, c =
3, and D = .75, for which 6 = .3K is the optimal size, see
Figure 2), we find that very small subsets, like pairs, are
not optimal. Finally, the slope of the relative accuracy
improvement is asymmetric around the optimum value: In
general, using a slightly  larger- than-optimal subset results
in a much smaller information loss than using a slightly
 smaller- than-optimal subset (for an illustration, see Figure

2). Therefore, somewhat large subsets are the conservative
 choice.

 DISCUSSION

We demonstrate that choices from random subsets of
brands can contain more information about demand than
choices from all brands under study. Three different statis-
tical reasons contribute to the findings: Subsets allow more
choice tasks per respondent, subsets improve the estimation
of correlations between random utilities, and subsets can
have more balanced utilities than full sets. Which subset
size a survey designer should use depends on the relation-
ship between size and respondents’ cognitive difficulty, on
the particular model used to estimate demand, and on prop-
erties of the demand itself. Depending on these moderating
conditions, optimal subsets can range from pairs to the
complete sets of all brands under study, and the improve-
ments from using the optimal subset size can be large.
Therefore, subset size should be an important  choice-based
conjoint design variable. This article provides the theoreti-
cal basis for understanding why and when subsets can help
and gives several rules of thumb about the best subset sizes
to  use.

The most robust benefit of subsets arises from the notion
that choices from smaller choice sets are quicker and easier
to make, so surveys using smaller subsets can use more
choice tasks per respondent, given a constraint on the total
number of profiles. We find that a choice experiment
designer who faces this resource constraint will always find
strict subsets to be beneficial, but the optimal subset size
and the magnitude of the benefit depend on the moderators
introduced in the previous paragraph. Pairs are optimal 
for the homogeneous MNL with only brand intercepts,
whereas this corner solution finding does not generalize to
more complex settings. The  HB-MNP model calibrated on
 real-world conjoint data provides probably the most practi-
cally relevant results. Of the five brands in the study plus
the outside option, the optimal subset size is a triple or a
quadruple depending on the measure. In our studies, the
brand equity estimate—that is, the standard deviation of the
change in share predicted as a result of setting a product’s
brand partworth to zero—benefits the most from subsets
with a  9%– 15% decrease when the subsets used are triples
versus when they are the  full-set  sextuples.

Even when the number of choice tasks is held constant,
so subsets require fewer product profiles, subsets offer
benefits: improved variance estimation and automatic util-
ity balancing for a brand with  low-brand partworths. Sub-
sets act as exclusion restrictions in the data, and so choices
from subsets can better separate brand intercepts from
brand correlations. The result is easier identification and
more precise estimation of the covariance structure, which
in turn can increase posterior precision of most statistics of
interest. As would be expected, measures such as the afore-
mentioned brand equity benefit more than measures not
critically related to specific  brand-level estimates, such as
overall holdout performance or expected lift due to a non-
brand attribute. Homogeneous MNL and MNP have con-
siderable gains, with  20%– 40% increased accuracy on
some measures while using  30%– 50% fewer profiles.
Heterogeneity in response blunts this benefit, and we find
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that  HB-MNP models usually gain less from subsets than
the homogeneous  MNP.

Autobalancing operates when the brands are unbalanced
in the utility function. When that is the case, the dominated
brands are rarely chosen from the full set of brands, and the
survey designer learns little about them. A  well-known
solution is balancing the  choice sets, for example, by
reducing the prices of the dominated brands. However,
such balancing requires knowledge of the very parameters
the survey is supposed to estimate. In contrast, random sub-
sets approximate balancing automatically because the rela-
tively dominant brand will be excluded from some tasks.
Our theoretical analysis and simulations demonstrate this
benefit when the degree of dominance is sufficiently large.
Four rules of thumb from a large scale simulation are as

follows: Strict subsets are beneficial when (1) more than
eight brands are in the study, (2) there are fewer than five
nonbrand attributes to consider, (3) the utility partworths of
the dominating brands are large, and (4) the proportion of
dominated brands is large. The autobalancing benefit can
operate in  large-scale discrete choice analyses, especially
when their focus is on niche marketing and many relatively
small brands competing with a dominant  mass-market
 competitor.

The statistical benefits of subsets are separate and addi-
tional to the  better-known behavioral benefits. When faced
with large choice sets, respondents switch from careful
compensatory assessment to simplifying heuristics (Payne,
Bettman, and Johnson 1988). As a result, the model errors
are smaller with smaller subsets (DeShazo and Fermo

828 JOURNAL OF MARKETING RESEARCH, DECEMBER 2009

Figure 2
BENEFIT OF SUBSETS IN THE MNL AS A FUNCTION OF EFFECT SIZE, 

PROPORTION OF DOMINATED BRANDS, AND THE OVERALL NUMBER OF BRANDS

Notes: Each line corresponds to a model with a different number of brands, plotting average across remaining treatments for all relative subset sizes. The
gray arrows indicate increasing the number of brands from 4 to 20. Det info = determinant of Fisher information.
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2002). More laboratory work is needed to estimate the size
of these behavioral benefits from subsets and to assess their
joint impact on and possible interactions with the statistical
benefits we  propose.

We also study the posterior precision of  difference- in-
probability measures, such as brand equity and sale lift—
that is, the effect of a binary attribute. Such counterfactual
questions are often the reason a conjoint analysis is con-
ducted, so understanding their statistical properties better is
managerially relevant. Notably, we find that the situations
with the most precise estimates of the level of probability
(i.e., the best holdout performance) do not correspond to
the situations with the most precise  difference- in-
probability estimates. In terms of subset size, we find that
relatively smaller subsets are usually optimal for the latter
measures. Fully understanding this discrepancy and deter-
mining the “correct” measure for judging estimation preci-
sion remains a goal for future  work.

APPENDIX: PROOFS OF PROPOSITIONS AND
DETAILS OF  EXAMPLES

Proof of  Lemma 1

Consider the (α, α) submatrix  of – Hn(α, β|S) in Equa-
tion 3. Because the subsets are random and equally likely,
the probability of a brand being present in Cn is S/ K, and
the probability of any given pair of brands is (S/ K)[ (S –  1)/
 (K –  1)]. Because pS

k
does not depend on n, the total infor-

mation in the design is as  follows:

Then, implies that the determinant of
can be computed as  follows:

Factoring  (S –  1)/ (KS) from every row gives the  following:
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Now, we add all other columns to the first column (the
determinant is invariant to this operation). The first column
becomes 1/  (K –  1) in every row, so we subtract the first
row from every other  row:

Therefore,

The trace result follows immediately by adding the diag-
onal in Equation A1. Q.E.D.  Lemma 1.

Technical Details of  Example 1

The full set {A, B, C} reveals only two nonredundant
pieces of information: sA = share of A, and sB = share of B.
Both are complicated nonlinear functions of all parameters
{αA, αB, ρ}: 

The model cannot be identified, because there are more
unknown parameters (three) than observational equations
(two). Now, consider choices from subsets (pairs). Pairs
reveal three pieces of information: sA|AB = share of A from
{A,B}, sA|AC = share of A from {A,C}, and sB|BC = share
of B from {B, C}. The model is now identified as long as 
α ≠ β: First, sA|AC pins down α because sA|AC (αA, αB, ρ) =
sA|AC(αA) =  Φ(–αA), where Φ is the standard normal cumu-
lative distribution function. Second, sB|BC pins down β
analogously because sB|BC =  Φ(–αB). Third, the model is
identified if the third share sA|AB identifies ρ conditional on
α and β. Suppose without loss of generality that αA ≥ αB
(i.e., A weakly dominates B). From εB|εA ~ ρεA + N(0,  1 –
ρ2), we  rewrite
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where ε and η are uncorrelated standard normal random
variables. The sum of two uncorrelated normals is a normal
with variance equal to the sum of the two variances.  Thus,

When αA = αB, this implies that sA|AB = 1/2 for every ρ,
and so ρ is not identified. Conversely, when αA > αB, sA|AB
increases monotonically in ρ  because

and Φ is increasing. Therefore, by symmetry, sA|AB(ρ) is
invertible whenever αA ≠ αB. Q.E.D.  Example 1.

Technical Details of  Example 2

Claim. Let K = 3, and fix α3 = 0, where 3 is the domi-
nant brand. For simplicity, we assume that 1 and 2 have the
same negative value,  α < –5/ 2. Then, N random pairs are
more  Fisher-informative than N  triples.

Proof. Consider an equal mixture of subsets A = {1, 2},
B = {1, 3}, and C = {2, 3}, with the respective  choice-
probabilities pA

k
, pB

k
, and pC

k
. Thus,

Let the probability of choice from the full set F = {1, 2, 3}
 be

In this design, the  single-task Hessians (α  Cn) are as
 follows:

 Therefore,
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We compare this information with the  full-set design’s
det(I3) = N2pF

1pF
2pF

3 = N2q2(1 – 2q). We can show that for
 α < –5/ 2,  det(– H3) <  det(– H2). To understand why a  low-
enough α makes the random subsets more informative, let
z = exp(α), so the  det(– H3) <  det(– H2) inequality holds
when  1 –   8z –   35z2 –   46z3 –   28z4 –  10z5 > 0. This is
clearly satisfied at z = 0, and continuity implies that it is
satisfied for a  small-enough z > 0 as well. The left-hand-
side polynomial is decreasing in z, so it has only one posi-
tive real root of  approximately

The root is not analytically  tractable.
Now, consider the trace summary of the information

matrix. With the equal mixture of  subsets, 

With full sets  (triples), trace(I3
3) = N[2q(1 – q)]. Let z =

exp(α), and note that trace(I2
3) > trace(I3

3) whenever  1 –
2z + 5z2 + 16z3 + 4z4 > 0. This inequality is satisfied for all
z > 0 and, thus, for all α because its LHS is bounded below
by  1 –  2z + 2z2 =  (1 –  z)2 + z2 > z2 > 0. Therefore, based
on the trace criterion, N random pairs are preferred to N
triples for all values of α. Q.E.D.  Example 2.
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