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I. Introduction 

Energy efficiency (EE) is one of the main policy tools for addressing climate change. 

Former U.S. Secretary of Energy Steven Chu once said “If I were emperor of the world, I would 

put the pedal to the floor on energy efficiency and conservation for the next decade” (The 

Guardian 2009). EE subsidies are politically attractive because of their ability to both reduce 

energy usage and save money for consumers and for governments alike. As a result, 

governments around the world are developing policies to encourage energy efficiency. 

California, for example, passed a law mandating the ambitious target of reducing its carbon 

emissions by 40 percent below the 1990 level by 2030. One critical pathway identified to achieve 

this goal is to subsidize energy efficiency upgrades.1 Indeed, the state of California spends about 

$1 billion dollars annually on residential energy efficiency upgrade programs.2  

There is, however, limited empirical evidence about the effectiveness of these programs. 

Most claims regarding savings from energy efficiency upgrades, such as the famous McKinsey’s 

cost curve, are based on engineering modeling projections (McKinsey and Company, 2009). 

Such projections usually ignore the behavioral aspects of energy consumption. For example, 

Chen et al. (2015) showed that households differ significantly in how they use the same 

appliances in similar apartments. Ignoring these behavioral differences in consumption might 

lead to an erroneous estimate of the energy savings. In fact, the recent empirical evidence of EE 

programs using experimental or quasi-experimental design suggests that seldom do these 

programs deliver the savings predicted by engineering estimates (Davis et al. 2014; Fowlie et al. 

2015; Zivin and Novan 2016; Allcott and Greenstone 2017; Liang et al. 2017).  

Scholars have argued that there is a need for more rigorous empirical research to identify 

heterogeneous program impacts based on program design, household and building characteristics 

(Allcott and Greenstone 2012). However, the difficulty in accessing energy consumption data, 

 
1 The CPUC’s 2016 report states: “When California makes plans for new energy resources, energy efficiency is the 
state’s first priority.” California has been ranked among the top 3 states in the past five years by the American 
Council for an Energy Efficiency Economy (ACEEE) in terms of its resources devoted to energy efficiency. 
2 During the program cycle in our research, the CPUC authorized $3.1 billion ratepayer’s money in funding 2010-
2012 EE program.  Investor-owned utilities (IOUs) spent most of the money—$2.6 billion of the total program 
money were spent by IOUs. 
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and the low take-up rates of EE programs hamper such empirical analyses. For example, Fowlie 

et al. (2015) conducted the nation’s largest randomized experiment to encourage households to 

adopt a free energy retrofit program in Michigan. The take-up rate was 6% despite ample 

resources spent for recruitment. The low take-up of EE programs makes program evaluation 

difficult because of potential selection bias.3 Even in some of the best-designed randomized 

control trials (RCT), 4  the low take-up rate of EE programs poses a significant barrier to 

instrument a randomization design as studies need large sample sizes to achieve enough 

statistical power.5 This problem also hinders the external validity of the analysis.  

Against this background, we have compiled a large dataset to evaluate the effectiveness of 

residential EE upgrade programs. We have access to meter-based monthly electricity 

consumption data for approximately 11 million households’ in Southern California Edison (SCE) 

territory from 2010 to 2014. The data is from the LA Energy Atlas, a relational database that 

enhances understanding of energy usage across LA County (Pincetl and LA Energy Atlas 

Development Team, 2015). We also have information on all SCE residential EE upgrade 

programs during that period with all financial incentive records claimed by SCE customers to 

improve their home energy efficiency. The data allows us to address the following research 

questions: (1) How effective are residential EE programs (appliance and equipment upgrades) at 

saving energy? Does program effectiveness vary across income groups and building 

characteristics? (2) What is the difference between engineering estimates of potential energy 

savings and actual measured energy savings?  

Our study makes two contributions. First, we refine our understanding of the general 

effectiveness of EE programs by analyzing multiple programs. To date, only a few studies use 

large-scale micro data in the U.S. Two prominent studies focus on residential energy efficiency 

 
3 The low EE take-up can be because of imperfect information, split incentives between renters and homeowners, 
and some other behavioral bias, such as inattention. (Allcott and Greenstone 2012; Gillingham et al. 2012) 
4 There are two large-scale RCT research cases in the literature with 30,000 observations in Fowlie et al. (2015) and 
100,000 observations in Allcott and Greenstone (2017). 
5 Sample size needed is inversely proportional to the square of p, where p is the difference in the proportion of the 
treatment group that takes up a program relative to the control group. So p=0.05 (0% of the control group, and 5% of 
the treatment group), researchers need 400 (=1/(0.05)^2) times the sample as with 100% compliance. We can do a 
simple exercise using our data information as a reference. Say average electricity usage is 600 kWh per month for 
non EE participants (control group), standard error is about 700 kWh per month. To detect 10% decrease in 
electricity consumption as treatment effect with 100% take-up, we need sample size of 2861; however, with only 5% 
take-up, we need sample size of 1,144,142. 
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programs and low-income weatherization programs in Wisconsin and Michigan (Fowlie et al., 

2015; Allcott and Greenstone, 2017). Both studies find that energy efficiency programs are not 

cost-effective. However, because these studies focus on a single energy efficiency program (e.g. 

weatherization),6 and/or a single demographic (e.g. low income), it is unclear whether the energy 

efficiency gap—defined by the difference between optimal and actual energy use—occurs 

because of the program or because of household demographics. To our knowledge, we provide 

the first study comparing numerous EE programs with large-scale micro data (e.g. more than 11 

million households’ utility billing records). Our comprehensive coverage of program data allows 

us not only to compare programs, but also to control for overlapping program impacts (owing to 

the fact that EE participants may apply to multiple programs) and avoid over-estimation that may 

result from these overlaps. With this unique large-scale data we can precisely compare impacts 

across program types (e.g. refrigerator, lighting, HVAC, etc.) with large statistical power. We 

can also investigate differences in program impact according to different incentive schemes, such 

as free giveaways and cash rebates.  

Second, we are able to differentiate program impacts based on building characteristics, 

such as vintage, and square footage. This differs from most previous studies that link account 

level electricity information solely to census socio-demographics, rather than including building 

level information. Observing heterogeneous program effects is critical to improving funding 

allocation and program design. 

To evaluate program impacts, we follow the identification strategy of the most rigorous 

research in EE program evaluation to date (Davis et al. 2014; Fowlie et al. 2015).7 We rely on a 

difference-in-difference strategy, a rich number of matching covariates, and various fixed effects 

(household-month and time) to address self-selection bias in program participation since 

residential EE programs are voluntary. First, we construct a set of households that are similar to 

our program participants but have never participated in any of the programs. To achieve this, we 

use the Mahalanobis matching method on a pool of more than 10 million households based on 

 
6 Allcott and Greenstone (2017) focus on two energy efficiency programs in Wisconsin, which are part of the 
national Better Building Neighborhood Program (BBN). The two programs were targeted at residential building 
retrofit. First, the energy consultant will give a free audit, and then recommend many parts of the needed retrofit to 
the building, such as attic insulation, air sealing, vaulted ceiling insulation, etc. 
7 We do not have a valid instrumental variable or a credible regression discontinuity (RD) design as programs are 
available to all SCE customers in the SCE service territory. 
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building characteristics geocoded from the assessors’ database and census blockgroup data.8  

Second, we use panel regression models to estimate the average program effect after matching. 

We exploit the monthly variation of program participation, and use household-month and time 

fixed effects to rule out time-invariant unobservable factors that might confound program 

impacts. Our identification is based on panel regressions comparing monthly electricity usage 

over time for households participating in EE programs to those who have never participated in 

the programs.  

Our results show that EE programs reduce overall electricity usage by 4 percent. However, 

the energy savings vary significantly by program type. While pool pumps and refrigeration 

programs are associated with significant energy savings (12-13% and 6%, respectively), HVAC 

retrofits generate insignificant overall savings, and programs targeted at other appliances (i.e. 

clothes washers and dishwashers) and building shell, are associated with increases in overall 

consumption.  

In addition, we find that energy savings are considerably inconsistent with the engineering 

estimates computed by Southern California Edison, the investor- owned utility for most of 

Southern California responsible for the EE incentive programs. For example, lighting programs 

achieve only 7% of the engineering estimates; 9 and whole house retrofit programs achieve just 

18% of the engineering estimates, while other programs such as those for dishwashers and 

clothes washers generate increases in energy consumption. However, programs upgrading pool 

pumps, water heating, and audits generate larger savings than the ex-ante estimations. This 

indicates that the bias of engineering estimates can go both ways, underscoring the importance of 

conducting EE evaluations with actual meter or billing level data. 

In terms of program heterogeneity, we find that the level of the financial incentives 

matters. For example, we find larger savings among products with cost-sharing (e.g. lighting 

rebate programs) than products given away for free (e.g. free LED light bulbs). Cost-sharing (< 

100% subsidy) is more effective than free distribution in the case of lighting programs as the 

impact largely depends on recipients’ usage behaviors. Indeed, it is possible that free light bulbs 

 
8 The covariates for matching are location (X Y coordinates), single vs. multi-family housing, vintage, square 
footage, etc., and socio-demographic variables from the census block group data (i.e. income, population density, 
education, etc. 
9 The estimated coefficients for lighting programs are not significant in our most conservative specification. 



6 
 

are not installed by households, in contrast with light bulbs purchased through rebate programs. 

Yet, we do not find differences between programs giving incentives to the distributors and those 

giving incentives directly to the end-users. The result highlights the possibility of improving 

program effectiveness by choosing the appropriate delivery mechanism for each products or 

technology.  

In terms of cost effectiveness, we find that pool pumps, and water heating are the most 

cost-effective type of EE upgrade (cost $0.015 per kWh saved, and $0.001 per kWh saved, 

respectively). HVAC and whole house retrofits are relatively costly measures to reduce 

electricity consumption since they only provide savings during certain times of the year ($0.19 

per kWh saved, $1 per kWh saved, respectively). Refrigeration programs are also promising 

given they generate large overall savings and are cost-effective. The direct program cost for 

refrigeration upgrade is $0.03 per kWh saved—quite comparable to a demand response 

behavioral program ($0.025 per kWh saved) (Allcott and Mullainathan 2010). However, our 

findings also suggest that policymakers proceed with caution when designing subsidy programs 

to upgrade appliance (dishwashers and clothes washers), building shell, HVAC, and whole house 

retrofits. The first two could lead to perverse upgrades that increase electricity usage, and the last 

two only provide savings at certain times of the year.  

The paper proceeds as follows. Section II locates our study in the current literature. Section 

III provides the background for the study of energy efficiency programs. Section IV presents our 

data and empirical strategy. Section V presents our main results on overall program impact. 

Section VI details heterogeneous estimates. Section VII discusses program cost effectiveness. 

Section VIII presents robustness checks. Section IX provides a concluding discussion. 

II. Literature Review 

There is growing empirical literature on the effectiveness of EE programs. However, due 

to privacy law applicable to accessing individual utility data, large-scale evaluations using 

credible quasi-experimental design are still rare. Estimates of savings in EE program impact 

evaluations often rely on model simulations and extrapolations, and rarely incorporate credible 

pre and post energy consumption data (Qiu and Patwadhan 2018). In addition, most government 
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reports lack credible statistical approaches to overcome selection issues. Consequently, the 

results from these evaluations are not easily generalizable. 

In the recent years, researchers have started to use smart meter and billing data to evaluate 

realized savings. In Table 1, we provide a list of the most recent academic research evaluating 

residential energy efficiency programs using micro data.10 The list indicates that most studies 

show lower realized savings than the ex-ante engineering predictions, ranging from 25% to 79% 

of the ex-ante projections. This indicates the need for adequate evaluation methods to better 

understand energy savings and program effectiveness.  

*** 

[Insert Table 1 Here] 

*** 

Despite the growing literature evaluating residential energy efficiency programs, few 

studies use large-scale household-level data with randomized controlled trials or quasi-

experimental designs. Further, most of these evaluate only a single program without controlling 

for potential participation in multiple programs, leading to possible biased estimates (See Table 

1). For example, Fowlie et al. (2015) study the effectiveness of the Weatherization Assistance 

Program (WAP) among 34,161 eligible low-income households in Michigan in 2011-2014. They 

find that WAP reduced monthly energy consumption by 10-20%, but achieved only 40% of the 

projected savings. Based on two Wisconsin residential EE programs, Allcott and Greenstone 

(2017) find that actual savings amounted to only 58 percent of projected savings. Those 

programs did not yield positive social welfare in terms of cost-effectiveness. Boomhower and 

Davis (2017) focus on a program providing air-conditioning rebates in California. They find that 

the cost savings from AC units are underestimated if we ignore the timing of the savings. 

Because these studies focus on individual programs, and because these programs are in different 

locations, it is difficult to compare the magnitude of the savings across programs.  

Davis et al. (2014) is the only study that uses large-scale data comparable to our study. 

They analyze 1.9 million Mexican households that replaced their refrigerators within 2 years. 

 
10 We cross-checked our list and information referenced from the most recent review paper done by Chiu and 
Patwardhan (2018). 



8 
 

They found that the program has a positive impact on reducing electricity usage (reduced by 8 

percent), but that the actual savings accounts for only one-quarter of the predicted savings. 

However, energy efficiency markets in Mexico are quite different from the U.S. Therefore, the 

question remains with respect to the effectiveness of similar programs in the U.S. Additionally, 

we analyze multiple types of appliance upgrades and can provide a richer context for policy-

making. 

Furthermore, because utility billing data does not include building-level information, very 

few studies include information on building characteristics. When they do, there are insufficient 

numbers of observations to examine building heterogeneity (see Table 1). As building quality 

explains a significant amount of energy use, it is imperative to include building characteristics to 

help control for selection bias in program participation. It might also help understanding 

heterogeneous program impacts.11 For example, the realized savings of an AC unit upgrade can 

be greater in a new and well-insulated building, than in an older building not well insulated. It is 

therefore difficult to extrapolate some of the current literature results without taking into account 

building characteristics.  

Our study contributes the existing literature in three ways. First, we use a large sample of 

households (more than 11 million unique accounts) with monthly electricity usage in 2010-2014 

to construct a rigorous quasi-experimental method to address potential endogenous program 

participation. Second, we examine all available end-user programs, thereby taking into account 

overlapping program effects. Third, we analyze heterogeneous program impacts by program 

types and building types. Although program take-up is often low, our large-scale sample makes it 

possible to examine heterogeneous program impacts with enough statistical power.  

III. Program Background 

Our study focuses on all the customer incentive based EE programs administered from 

2010-2015 by Southern California Edison (SCE)—one of the largest utilities in the United 

States, providing electricity to more than 14 million people. During that period, SCE provided 

 
11 Building quality have great potential to improve energy savings. For example, Asensio and Delmas (2017) 
examined the impact of certified green buildings on energy savings, and they found that certified green buildings 
(e.g. LEED building) can save up to 30% of energy consumption, compared to non-certified buildings. 
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financial incentives to customers for upgrading their home with more energy efficient products, 

such as lighting, pool pumps, refrigerators, and other appliances. To obtain the rebate, SCE 

customers typically need to upgrade to a more energy efficient product in their homes during the 

program implementation period, and then apply for the rebates by mail or online. For example, 

single-family home owners can apply for rebates through the Home Energy Efficiency Rebate 

(HEER) Program—the largest residential program based on expenditure (CPUC 2015), and 

multi-family owners can apply through Multifamily Energy Efficiency Rebate Program for 

various upgraded appliances, such as HVAC, lighting, pool pump, and fridge. Other programs 

provide larger financial incentives for EE upgrades. For example, the Comprehensive Mobile 

Home program focuses on promoting EE technologies among mobile home owners and provides 

direct install for lighting and HVAC upgrade at no charge. 

Table 2 shows the name and the number of SCE households enrolled in different EE 

upgrade programs. We also present the detailed program implementation strategies in Appendix 

B. There are 11 types of products based on SCE’s categorization, namely appliance upgrade (i.e. 

dishwasher and clothes washer), consumer electronics, HVAC retrofit, lighting, pool pumps, 

refrigeration (i.e. fridge and freezer), water heating, audits, whole house retrofit, and building 

shell. Note that households may claim multiple incentives to upgrade their homes through 

various programs. To be consistent with SCE’s program design rationale, we focus our analysis 

on product categories. As Table 2 shows, among those products, lighting and refrigeration have 

attracted larger participation.  

 

*** 

[Insert Table 2 Here] 

*** 

EE programs might use different levels of financial incentives (as shown in Table 3). They 

can provide the products for free or subsidize a certain percentage of the cost (i.e. rebate). SCE 

also provides incentives to different recipients. For example, incentives given to contractors or 

distributors are called up-stream or mid-stream incentives. Down-stream incentives are given 

directly to households, the end-users.  
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*** 

[Insert Table 3 Here] 

*** 

IV. Data and Empirical Framework 

Data Description 

We combine four datasets to understand the effectiveness of energy efficiency programs 

among residential households in Southern California. We focus on programs where households 

could claim financial support between 2010-2015.12 To evaluate the impact of the programs on 

energy usage, we use monthly electricity consumption measured at the household account level.  

Electricity usage and program participation data are extracted from the LA Energy Atlas, a 

relational database that enhances understanding of energy usage across LA County (Pincetl and 

LA Energy Atlas Development Team, 2015). 13 Key data for EE program participation are from 

both the California Public Utilities Commission (CPUC) and SCE, the regional electricity utility. 

Additional building level characteristics information comes from the Los Angeles County 

Assessor's property dataset, as well as socio-demographic information from the census database. 

See Table 4 for more details regarding the source and coverage of our data.  

*** 

[Insert Table 4 Here] 

*** 

EE Program Data. Program participation data identifies residential energy efficiency 

programs implemented in SCE service territories during 2010-2015. Note that 2015 electricity 

consumption data is unavailable to us, so for the program impacts on electricity savings, we only 

analyze the information from 2010 to 2014. Yet, the program information from 2015 is useful to 

 
12 Program related information (ex: installation date, rebate amount, etc.) was recorded. However, we do not analyze 
other programs that do not directly involve end-users’ action: for example, training and education programs to 
promote EE upgrade, subsidy programs for developing new EE technologies and standards, etc.  
13 www.energyatlas.ucla.edu 

http://www.energyatlas.ucla.edu/
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prevent us from selecting any future EE participants into our matched control group. More than 

80% of our observations have at least 12 months of data for the analysis. 

Each time a household claims rebates or direct financial support for an upgraded 

equipment/appliance, there is a record that documents related program information, such as the 

installation date, rebate amount, type of product, and predicted savings. Based on the installation 

date claimed in the form, we generate a program participation variable reflecting the starting 

month of the upgrade for each household and each product. All subsequent monthly information 

for an EE participant is considered a “treated period” for that certain program/measure once a 

household has participated in a program.  

The EE program participation data cover 506 cities. 14  We illustrate the participation 

information in Table A1 and Figure A1 of the Appendix. Comparing EE participation rates 

across income categories shows more participation by higher income areas (the top income 

quantile). The take-up rate is 11.6% for the highest income quartile, and 5.5% for the lowest 

income quartile, respectively. Orange County has higher EE adoption rates (12%) than the other 

counties. Los Angeles and Imperial County have lower adoption rates (around 6 percent) than 

other counties. This indicates the need for a credible quasi-experimental design to mitigate this 

self-selection bias when evaluating program effectiveness. 

Electricity Usage Data. Account-level electricity billing data are available from January 

2010 through December 2014 across the SCE service territory. Our data contains more than 11 

million unique accounts with monthly electricity usage data for 2010-2014. The panel data is 

unbalanced because households may move in and out of the building, or even the area so they 

may not have a complete record throughout the study period. Yet, more than 80% of our 

observations have more than 12 months of data for the analysis. 

The unit of analysis is the combination of the household utility account and the building. If 

a household has moved to a new address, even while carrying over their same utility account, we 

generate a different ID. This approach accounts for the potential that the same household may 

 
14 Including Irvine, Lancaster, Santa Ana, Palmdale, Valencia, Aliso Viejo, Orange, Rancho Santa Margarita, 
Corona, Fullerton, Long Beach, Moreno Valley, Lakewood, Newhall, Costa Mesa, Tustin, Mission Viejo, Los 
Angeles, Torrance, Saugus, etc. However, the data do not cover information for LA City, which is served by the Los 
Angeles Department of Water and Power (LADWP), a separate utility. 
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consume electricity differently due to building characteristics, such as vintage and square 

footage. Also, households may not bring their appliances to a new building, so they are no longer 

considered treated once they moved.   

We further illustrate the average consumption pattern by calendar month of the year for EE 

participants and non-participants in Figure 1. It is evident that electricity usage exhibits a 

seasonal pattern. As shown in the figure, EE participants tend to consume more (ranging from 

more than 600 kWh per month to 900 kWh per month) than non EE-participants (ranging from 

around 500 kWh to almost 800 kWh per month). Even though non-participants have reasonably 

similar consumption pattern to EE participants before matching, this figure shows that there is 

room for better selecting the comparison group. This difference between EE participants and 

non-participants motivates us to control for time-invariant characteristics using household-by-

month-of sample fixed effects. We also recognize that many variables (such as building vintage, 

size, etc.) that determine program take-up, may still be correlated with electricity consumption 

between EE participants and non-participants. As the literature shows that regression models 

may perform poorly with small covariate overlap (Dehejia and Wahba, 1999, 2002; Glazerman 

et al., 2003), we use a matching method to improve our selection of the counterfactual group 

based on all the plausible observables to improve covariate overlap. The empirical strategy 

section explains our method in detail.  

*** 

[Insert Figure 1 Here] 

*** 

Building Characteristics Data. Building characteristics used in this analysis include use 

type (i.e. single-family housing, multi-family housing, condominium, etc.), square footage, 

building vintage, climate zone, whether the house is occupied by its owner as the primary 

residence, and whether the household is registered under CARE/FERA, energy discount 

programs for low income households, and whether the household is identified as having a 

swimming pool or not. The descriptive analysis of the key variables is shown in Table 5.  For LA 

County, building use type and ownership information is sourced from the 2016 county assessor 

office’s parcel database that is publicly available on the LA County GIS portal website. For all 

other counties, information is from a standardized parcel database created by the Southern 
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California Association of Governments (SCAG). Through a multi-stage geocoding process 

developed for the LA Energy Atlas, individual account addresses are associated with parcel 

boundaries. This process links each utility account, and its associated utility consumption 

records, with the building attribute information available for the various parcel database sources. 

*** 

[Insert Table 5 Here] 

*** 

Socio-demographic Data. We use US census data to obtain socio-demographic 

information. The census information is taken from the American Communities Survey (ACS) 

2006-2010 estimated at the block group level. The variables of interest include median income, 

population density, poverty, ethnicity, education, the percentage of homeowners, and occupancy 

rate. 

Empirical Strategy 

The program impact can be identified by comparing the change of electricity consumption 

over time between participants and non-participants. The challenge for the evaluation is that 

many other factors may impact households’ program participation decision as well as their 

energy usage. In order to rule out factors that may confound the program impact, we first find a 

set of households that are similar to our program participants but have never participated in any 

of the programs. We use a matching method to find this relevant comparison group based on 

observable variables such as location, building characteristics, and demographic variables—all of 

which are determined to be important regarding decisions on program uptake in the literature. 

We did not use any outcome variable to construct our control group so as to retain the objectivity 

of our design, as recommended by Rubin (2007) when drawing casual inference from 

observational studies. This pre-match method can improve the covariate overlap to reduce bias 

before running the panel regression models with various household fixed effects (Dehejia and 
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Wahba, 1999, 2002, Ho et al. 2007, Stuart 2010).15 This covariate overlap improvement using 

matching before panel fixed effects regressions is also evident in the empirical setting (Alix-

Garcia et al. 2015). 

We pre-match households that are program participants in any year between 2000 and 

2015 with households that have never participated in any EE programs using Mahalanobis 

Distance Matching with replacement. This matching scheme uses the data from over 10 million 

non-participants and finds the nearest neighbors to our program participants based on several 

covariates that were not previous available in the literature. The idea is to establish an 

appropriate counterfactual sample of households that are as similar to our participants as 

possible, but have never participated in any of the energy efficiency programs in our study. To 

conduct the matching, we require exact match within the residential use type (e.g. single family 

housing, multi-family housing, condominium, combined residential), vintage bins (built before 

1950, between 1950 and 1978, between 1979 and 1990, and after 1990), square footage bins,16 

climate zone, and fuzzy nearest distance matching over other covariates include owner-/renter-

occupied,17 whether they participated in any low-income electricity discount program, either 

California Alternate Rates for Energy (CARE) Program, or  Family Electric Rate Assistance 

(FERA Program), and whether they had a pool.18 We also include x y geographic coordinates to 

make sure that we can minimize this extra dimension to improve our location matching.19 Our 

contribution is to use both socio-demographic and building-level information in selecting our 

counterfactual group as the existing literature uses covariates from socio-demographic 

 
15 Nonetheless, we are aware that the matched comparison group is not drawn from a randomized experimental 
setting. There may still exist differential time trends in electricity consumption between participants and non-
participants. We address this concern in the robustness check section. 
16 Because square footage has a very wide range, we bin them based on 100 percentiles.   
17 Based on property tax records, we can identify those who are the building owner and at the same time live in that 
building as their primary residence. 
18 Pool ownership information is limited and incomplete. Therefore, for those who do not have pool information, we 
simply impute the missing values that simulate the distribution. We can treat this process as if we use this extra pool 
information to improve the matching method without throwing away observations. We have also tried matching 
without this pool ownership information, and the result is consistent. 
19 Since we use x-y coordinates in matching, some may worry about spillover effect—non-participants who live 
adjacent to our treated participants may become more energy saving; for example, they learn more about energy-
related knowledge. Nonetheless, this potential spillover effect will make our program impact under-estimated which 
means that our identified program impact, if any, is even stronger in the absence of spillover. Also, we use similar 
matching covariates but without x-y coordinates, and the results are consistent, indicating small spillover effect.  
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information (mostly at the census blockgroup level) or past electricity usage to find the 

counterfactual. Very few studies have building-level information (see Table 1), which is 

considered as more important determinants in explaining energy efficiency retrofit investment 

than socio-demographic characteristics (Trotta 2018). 

After matching, we use panel regression models to identify impact at the household level. 

By controlling for household fixed effects or household-month fixed effects, we eliminate 

unobservable household-level characteristics that do not change over time. Household size, 

political affiliation, and environmental attitude, are all examples of time-invariant variables that 

may affect program participation as well as electricity consumption. Controlling for household 

fixed effects in the model can rule out those characteristic differences between participants and 

non-participants. We also control for time fixed effects for any unobservable factors that may 

confound the program impact. 

In the post-matching estimations, we rely on the difference-in-difference (DID) technique 

to identify program impact. First, we determine the difference in electricity use between program 

participants and non-participants to account for the systematic electricity usage difference (first 

“difference”). Then we calculate another difference to compare electricity usage before and after 

retrofits for participants as well as non-participants (second “difference”).  

To evaluate the overall treatment effects for residential households, we estimate panel 

regressions (equation 1) with various fixed effects on the pre-matched sample with the following 

specification: 

                        (1)  

where   is an indicator variable for identifying household i switches from zero to one 

when that household joined any EE program in month m year t. We use the month when 

households installed the product to determine their status as a participant of the program. To 

understand energy usage, we use , which is the natural log of energy usage (in 

kilowatt-hours (kWh)) for household i in month m year t. Because of the large variation of this 

variable (for example, extremely heavy energy users in Beverly Hills), we use a natural 
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logarithm to smooth the consumption variable at the extremely higher end of the distribution. 

This method also eliminates noisy observations that have zero electricity consumption, as even 

keeping a refrigerator on will take at least 20 kWh a month. Unfortunately, we do not include 

natural gas consumption data as they are unavailable to us.  

Household-month fixed effects (  take into account unobservable household 

characteristics in a certain month that may affect energy usage. That said, we create 12 separate 

fixed effects for each household. These household-month fixed effects address unobservable 

time-invariant differences in attributes between program participants and non-participants. In this 

context, the time-invariant unobservables refer to those characteristics that may affect program 

participation, and at the same time affect electricity usage; for example, a person’s 

environmental attitudes, household size, and political views. Our model controls for these, as 

long as they are time-invariant. Household fixed effects within the month in a year also take 

away the systematic seasonal pattern of household’s electricity consumption. Identification 

comes from the within household-month variation. For example, if a household joins a program 

on June 2010, we differentiate all the months before the participation and the corresponding 

months after the participation. This means that we are comparing January 2010 (before) to 

January 2011 and January 2012 (after), February 2010 (before) to February 2011 and February 

2012 (after), March 2010 (before) to March 2011 and March 2012 (after), and so on. 

We also include month-year time fixed effects ( ) to control for economic or 

administrative shocks in each time period. During certain times of the year, some places may 

experience economic shocks and need to diverge more sources to other welfare programs instead 

of environmental programs; these unexpected economic shocks may also correlate with energy 

consumption in the region. As program impacts may be overstated with administrative capacities 

varied by time,  difference out those confounding administrative and economic shocks. 

To better understand what type of program works, we further analyze program 

effectiveness by dividing programs into different types of products. We estimate equation (2): 
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   (2) 

where  , ... are indicator variables for identifying 

household i switches from zero to one when that household join an EE program upgrading their 

home appliance/equipment (i.e. consumer electronics, HVAC retrofits, lighting, etc)  in month m 

year t. Our main goal is to test the mean change in electricity consumption associated with the 

EE product upgrade (i.e. parameters , … ). We are interested in testing the effectiveness 

of the program for different end-use products (whether <0;  <0…  <0). There are mainly 

eleven products delivered with financial incentives including appliances, consumer electronics, 

HVAC, lighting, pool pump, refrigeration, water heating, audits, whole house retrofits, building 

shell, and other equipment. 

V. Main Results 

Summary Statistics 

Table 6 shows summary statistics of various attributes among EE participants and non-

participants in our total sample and matched sample. We examined differences between the 

characteristics of EE participants and non-participants. Participants are more likely to own their 

homes, tend to live in newer buildings, in areas with lower population densities and higher 

incomes with lower poverty rates. Participation rates are higher among white and Asian 

populations and lower among African American and Hispanic populations. Participants also tend 

to be from neighborhoods with more highly educated populations. The findings all indicate that 

participation correlates with greater access to resources, and further justify our matching method 

to improve covariates overlap. 

*** 

[Insert Table 6 Here] 

*** 
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To test covariate balance, we calculate the normalized differences in means between EE 

participants and non-participants in the whole sample, and that between EE participants and 

matched non-participants (See Table 6). These figures are calculated by the difference in means 

between the treatment and control groups divided by the square root of the sum of variances for 

both treated and control groups. The idea is to calculate the standardized differences in various 

attributes, so we can compare whether our matching method improves the similarity of the 

control and treatment group, as this is the most common way to diagnose covariate balance 

(Rosenbaum and Rubin 1985; Stuart 2010).  

We further illustrate this comparison in Figure 2. As Figure 2 shows, our matching 

improves covariate balance in almost every aspect. Most covariates have a smaller normalized 

difference in means with the exception of the Asian population and the occupancy rate. With 

matching, not only has the covariate balance greatly improved, but also all the normalized 

differences in means are also smaller than 0.25 standard deviations, which is the suggested rule 

of thumb in the literature (Rubin 2001; Imbens and Wooldridge 2009).  

*** 

[Insert Figure 2 Here] 

*** 

Overall Treatment Effects 

We present the overall treatment effects based on equation (1) in Table 7. The results 

indicate that the residential energy efficiency incentive programs reduce overall electricity usage 

by 4 percent, or 25 kWh per month. This is equivalent to 311 kilowatt hours of annual savings. 

The adoption rate for any energy efficiency upgrade is about 8% for the five-year duration. So if 

we extrapolate this number into 11 million households, this indicates that the overall program 

impact is equivalent to 54 gigawatt hours in annual savings (311*11,000,000*8%/5= 54,736,000 

kWh).  

We present the graphical analysis of the overall treatment effect through another 

perspective (See Figure 3). We estimate an alternative version of equation (1) but instead interact 

the EE participation variable with indicator variables representing quarters before and after the 



19 
 

take-up time. We plot the coefficients and 95 percent confidence intervals for each quarter 

relative to the time of EE take-up based on the following event study regression. 

  (3) 

Where  is the indicator function representing the relative time 

to program participation. For example, q=-6 indicates 6 quarters prior to the program 

participation; q=6 for 6 quarters after EE upgrade. The excluded category is q=0, indicating the 

exact month of EE take-up. This graph result indicates program impact relative to the month of 

EE participation. The coefficients are estimated using the matched sample. 

 Figure 3 displays overall electricity reduction after program participation, and the overall 

savings seem to persist over time after the second quarter. There is no treatment effect prior to 

the program participation. However, a slight time trend between participant and non-participants 

prior to the program participation is exhibited. We address this concern in the robustness check 

section. The results are similar when controlling for this upward time trend.    

*** 

[Insert Figure 3 Here] 

*** 

Individual Product Effects 

Beyond the overall positive program impacts, it is crucial to examine which programs 

deliver the most savings. Table 7 presents the main coefficient estimates for various EE upgrade 

programs based on equation (2). All of the specifications are based on the matched sample for 

estimating the average treatment effect on the treated. Columns (4) is based on specifications 

with the most conservative fixed effects—household-month fixed effects and time fixed effects 

as in our estimation equation (2). Columns (1) and (2) include alternative fixed effects—column 

(1) is with household and county-month-year fixed effects; column (2) is with household and 

city-month-year fixed effects. Columns (1) to (3) are clustered at the household level to control 

for serial correlation. In column 4, we also cluster the standard errors at the building level to 

control for spatial and serial correlation. As standard errors clustered at the building level yield 
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more conservative results, we use this specification as in column (4) in the rest of the 

regressions. 

*** 

[Insert Table 7 Here] 

*** 

Overall, the magnitude and the significance of the results do not change much, especially 

for those products that deliver the most savings. For example, pool pump programs, on average, 

deliver 11 to almost 13 percent of savings; programs that give incentives on refrigeration 

generate 6-7 percent of savings, on average. However, in the case of lighting programs, we find 

that the magnitude of savings is smaller and insignificant in the more conservative specification 

(columns 4) than in the less conservative specification (columns 1 and 3). 

The whisker plot (Figure 4) highlights the results based on our preferable specification in 

Table 7 Column 4—including household-month and time fixed effects and our most conservative 

standard error estimation. A negative number in the figure means that program participants 

decreased electricity usage. Based on the results from all the multiple statistical models, pool 

pump programs yield the highest savings. Households participating in these programs, on 

average, reduce their energy consumption by 11-12 percent. The result accounts for seasonal 

patterns: pool pumps may be highly utilized in the summer, making those programs more 

attractive during certain months of the year. In this case, we may under-estimate the program 

impact (with small savings) because electricity usage may suddenly go up right after upgrading 

the pump. As we control for household-month fixed effects, we rule out this selection in month 

factor by comparing electricity savings in the same month of the year, before and after program 

participation. Other effective programs for reducing electricity consumption include incentive for 

upgrading refrigeration (including refrigerator and freezer). Households who have new efficient 

refrigerators or freezers reduced their electricity consumption by 6 percent, on average.  

*** 

[Insert Figure 4 Here] 

*** 



21 
 

Lighting programs result in relatively small savings—0.3 to 0.7 percent reductions, and 

statistically indifferent from zero in our most conservative estimate. 20  The result could be 

attributable to any of the following three factors. First, lighting may constitute only a small part 

of household electricity consumption. Second, some light bulbs may not be installed when they 

are given away for free. Third, light bulb upgrades may have been adopted anyway without those 

programs. We will not be able to directly verify the third mechanism, but we investigate the 

second mechanism indirectly in the next section by examining program heterogeneity. 

Other programs do not yield large impacts in terms of electricity savings, or result in 

increased consumption. These include programs that promote appliance upgrades (mostly 

dishwashers and clothes washers), programs that incentivize HVAC retrofit, whole house 

retrofit, and building shell upgrades. This could indicate rebound effects, which happen when 

households increase their electricity consumption with more efficient appliances. It is also 

possible that some households, when upgrading, may have chosen larger appliances, which may 

lead to increased energy consumption.21 There may also be cases where households, when made 

aware of being able to save energy, spend less effort on energy conservation (Asensio and 

Delmas 2016).22 For example, after upgrading to a more energy efficient product, people do not 

unplug their charging devices, nor turn off unused lights. We do not have direct evidence in the 

data to determine the most likely explanation. However, we investigate this issue in the next 

section through an analysis of heterogeneous effects.  

Water heating, audits, and consumer electronics programs yield less conclusive results 

across models. Results from the water heating and audits programs yield about one to two 

percent savings.23 Consumer electronics programs yield insignificant results. The lack of savings 

 
20 This zero saving result is robust after dropping light bulb incentives given away at the distributors/retailers 
because after interviewing the program managers at SCE, they worry that upstream/midstream light bulb incentives 
may not be correctly recorded in the program data. 
21 Houde and Aldy (2017) find that rebate programs induce a potential income effect that EE participants upgrade to 
a more energy efficient, yet larger appliance.  
22 Asensio and Delmas (2016) observe residential households’ dynamic energy behaviors at the appliance level 
through high-frequency smart-meter technology, and they find that when households save energy by turning lights 
off, there is potential associated rebound effect of increasing energy usage by plug load and heating and cooling. 
23 Water heating upgrade is mainly through providing free water saving kits (ex: low flow showerhead, faucet 
aerator, etc.) through a so-call Home Energy Efficiency Survey Program. 
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resulting from consumer electronics EE programs may be due to the small sample size – only 

652 customers have ever participated in those programs.  

We run the same regressions as in equation (2) by month to see how the results may differ 

in different seasons. We present our results in Figure 5 and Appendix Table A2. Consistent with 

our results in Table 7, the pool pump upgrade and refrigeration upgrades lead to constant savings 

in different seasons. HVAC programs have a stronger seasonal effect—positive savings in the 

summer while no or even negative savings in other months. This result is consistent with the 

literature. HVAC programs deliver savings during different months of the year or even different 

times of day. The result highlights the concern that the impact of HVAC programs may be 

limited by the behavioral responses of the users, while those more “passive” programs, like pool 

pump and refrigeration programs, in general lead to more persistent savings throughout the year. 

Whole house retrofit programs exhibit seasonal saving patterns similar to HVAC programs, but 

with larger confidence intervals and smaller savings in the summer months. However, the result 

is less conclusive for the whole house retrofits programs as they start after 2013.   

Comparison with Engineering Predictions 

In order to quantify our estimates and compare them to the ex-ante engineering estimates 

recorded by SCE, we estimate equation (2) using monthly electricity consumption in kilowatt-

hours (kWh) as the outcome variable. The ex-ante saving predictions are based on SCE’s 

original recorded saving projection. Those ex-ante predictions are derived from The Database for 

Energy Efficient Resources (DEER), a publicly available tool for predicting energy savings for 

various energy efficient technologies and measures. For each specific upgrading product, we 

calculate its average predicted monthly savings based on SCE’s assigned life-cycle savings for 

that installed product. The comparison is summarized in Table 8. 

*** 

[Insert Table 8 Here] 

*** 

As Table 8 shows, program impacts using actual billing data are in general inconsistent with 

SCE’s ex-ante predictions. We find that this overstating projection is particularly strong for 
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lighting, where the estimated savings are 13 times more than the actual savings. Some programs 

even show potential rebound effects—incentive programs for retrofitting building shell and other 

appliances (e.g., dishwasher, clothes washer) lead to more electricity consumption. The measures 

that are on target or even out-perform the ex-ante saving predictions are pool pumps, water 

heating, and audits. 

VI. Heterogeneous Effects  

Program Financial Incentives  

We further investigate the program impacts by the level and delivery mechanism of the 

financial incentives.  

Table 9 reports estimates from four separate regressions based on the program impacts 

interacted with the way subsidies were distributed, and the level of subsidy. For example, some 

programs offer indirect financial incentives to upstream actors (i.e. product manufacturers) and 

midstream actors (i.e. retailers or service providers) to promote energy efficient upgrades, while 

some programs offer so-called downstream incentives that target end-users through mail-in or in-

store rebates or discount.  

*** 

[Insert Table 9 Here] 

*** 

As Table 9 shows, free give-away lighting programs (results in row 6, 9) generate smaller 

savings, compared to those that provide partial financial incentives. 24  On average, lighting 

rebate programs lead to 3 percent significant savings, while free lighting programs lead to only 

0.3-0.4 percent savings. The result stays the same when controlling for the quality of light bulbs 

using the ex-ante predicted savings (Column 2 in Table 9). This indicates larger impacts among 

products with cost-sharing delivery methods as compared to the same type of products given 

away for free. This is in line with the public finance literature that has identified several positive 

 
24 The exception is HVAC programs. Results for up/midstream HVAC and HVAC rebate programs are not 
significant because there are very much fewer observations in up/midstream HVAC programs. We cannot conclude 
whether this statement applies to HVAC. 
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effects of cost sharing: first, a selection effect which cost-sharing helps select those who need the 

product more and therefore use more; 25 second, a psychological effect  that people exhibit 

behavioral bias by using the product more if they pay for it (similar to sunk cost effect) (Thaler, 

1980; Arkes and Blumer, 1985); third, a signal effect that people view the product as having 

higher quality, thus encouraging their usage (Bagwell and Riordan 1991; Riley 2001).  

Therefore, cost sharing, while potentially reducing the demand for energy efficiency 

investment, may induce a positive selection of households who need or value the product more, 

and thus use the product more appropriately. The result highlights the possibility of improving 

the effectiveness of the program by choosing the appropriate delivery mechanism for different 

products. The result is not very conclusive comparing the up/midstream programs vs. the end-

user rebate programs.26  

Household and Building Characteristics 

We also conducted sub-group analysis. We estimate equation (2) by income quartile, 

vintage, square footage, and climate zone to understand where programs deliver the largest/least 

savings. This analysis can help policymakers better target programs and areas that deliver the 

largest impact.27 

We find that the magnitude of the coefficient for pool pump and refrigeration programs are 

consistent with the main result in Table 7 Column 4 based on the sub-group analysis. Therefore, 

we focus our analysis of heterogeneous effects among programs that have potential rebound 

effects—EE participants seem to use more electricity after upgrading, compared to non-

 
25 In contrast, free lighting programs may give free light bulbs to those who do not need them; for example, people 
who just replaced their light bulbs, or those who would never throw out perfectly good light bulbs even though they 
save energy. 
26 Pool pump programs incentivizing end users seem to generate slightly larger savings than incentivizing up/mid-
stream manufacturers and contractors. However, the difference may not be considered large as to economic 
meanings. 
27 The difference between engineering estimates and actual savings can also arise because some EE subsides are 
“non-additional,” meaning that participants would have bought the EE upgrade anyway without the program. 
Boomhower and Davis (2014) use regression discontinuity to calibrate how large this effect could be and found that 
half of the EE participants would have done the upgrade with no subsidy. We could capture this concern in our 
control group. For example, people who have never participated in an EE program may actually have upgraded their 
lights, leading to a lower “treatment effect on the treated,” using the DID method. Therefore, our model identifies 
the “additional” program impact, while engineering prediction identifies the savings purely from the equipment 
alone. 
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participants. Then we try to compare electricity usage among different income quartiles, square 

footage quartiles, and vintage sub-groups. 

Table 10 compares program impact between those who live in a lower income 

neighborhood (below median income) and those who live in a higher income neighborhood 

(above median income) using median income information from the census block group data. We 

do not see significant differences by income groups across various products, except for audits.28 

Audits programs lead to slightly lower savings for households in lower income neighborhood 

(2% savings) than households in higher income neighborhood (3% savings) although this 

difference is economically miniscule. However, since income is identified under a coarse block 

group information, rather than account or building level, we need to take this result with a grain 

of salt. 

*** 

[Insert Table 10 Here] 

*** 

Table 11 compares program impact between those who live in a larger home (1st and 2nd 

square footage quartile) and those who live in a smaller home (3rd and 4th square footage 

quartile). 29 Most of the comparisons by the size of the building do not yield economically 

significant differences. The only exception is the audits programs. Audits lead to around 5 

percent savings for large buildings (3rd and 4th quartile), and 1 percent savings for smaller homes 

(1st and 2nd quartile). This result may simply be due to the larger savings potential in retrofitting a 

large building.  

*** 

[Insert Table 11 Here] 

*** 

 
28 Even though the coefficients of HVAC, lighting, water heating, and whole house retrofit look slightly different by 
income group, the differences are not statistically different. We also find a consistent pattern by income quartile. 
29 For multi-family housing and condominiums, we cannot clearly identify each account’s exact square footage---we 
can only identify the building structure they live in based on geocoding their account address to match with 
assessors’ tax database. Therefore, we use single-family housing for this sub-group analysis. 
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The other part of Table 11 compares program impact between those who live in a home 

built before 1978 and those in a home built after 1978. We chose 1978 as the cut-off year 

because California Title 24 Building Energy Efficiency Standards were established at that year.30 

The most interesting results here concern HVAC and whole house retrofit programs. For HVAC, 

coefficients are positive before 1978 and negative after 1978. This indicates that HVAC program 

participants in older buildings use more electricity after joining the program, compared to their 

non-participant counterpart. It could be that energy efficient HVAC and building efficiency may 

complement each other. For example, Liang et al. (2016) found that some initial building 

attributes may affect the impact of retrofits. For example, HVAC duct sealing retrofits, a type of 

popular retrofitting in our data, can be more effective with better roof insulation. We also find 

suggestive evidence in our data that those who have participated in both HVAC retrofit and 

whole house retrofit programs reduced their electricity consumption by 8 percent more than 

those who have simply done a HVAC retrofit.31  

Regarding whole house retrofitting, the coefficient is negative before 1978 and positive 

after 1978. This result indicates that older homes benefit from the retrofit program. This is 

consistent with engineering understanding that EE investments in older buildings may yield 

larger saving potentials. However, newer homes increase their consumption after the retrofit. 

This surprising result might be explained by an increase in the size of the appliances installed 

during the retrofit.32 

The results for the whole building retrofit programs are the opposite. Participants in older 

buildings after retrofitting consume approximately 2-3 percent less electricity, while participants 

in newer buildings use more electricity after participating in the program. This heterogeneous 

effect in whole building retrofits indicates that older buildings may have larger saving potential. 

Nevertheless, we recognize the fact that all whole house building retrofits have potential to 

improve natural gas savings. However, we do not have access to natural gas data for further 

 
30  There may be a lagged effect for Title 24 implementation that attenuates this comparison. However, this 
attenuation effect will make our results even stronger if we find drastic heterogeneous program effects comparing 
buildings constructed before 1978 with those built after 1978. 
31 We only have 46 households participated in both HVAC and the whole house retrofit programs, so we are not 
able to estimate further by the building type.  
32 Based on anecdotal evidence from one anonymous SCE program manager, they have also seen cases where 
people increase their size of homes when doing a whole house retrofit.  
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analysis. This limitation may cause us to underestimate the overall energy savings from the 

whole house retrofit programs and the magnitude of this underestimation will depend on the use 

of natural gas services in homes.  

Table 12 examines the impact of energy efficiency programs by climate zone. A climate 

zone is defined based on its weather pattern. The overall results are consistent with the main 

results. The saving estimates of HVAC and whole house retrofits are heterogeneous as we expect 

them to be more sensitive to the local weather pattern. This result is in line with Figure 5, which 

shows the seasonal impact of HVAC and whole house retrofits. For example, HVAC retrofits 

deliver 1% savings in climate zone 10, which requires higher demand for energy needed to heat a 

building (1678 heating degree days for the representative city in the zone), while they deliver a 

5% increase in electricity consumption in zone 6 where heating is not in high demand (742 

heating degree days for the representative city in the zone). The saving results from the whole 

house retrofit programs also differ from zone to zone.  

VII. Cost effectiveness 

We evaluate the program cost-effectiveness by product in Table 13. Column 1 shows the 

mean annual savings by product based on the result in Table. From the program data, we 

calculate the average direct program cost for each upgrade. Direct program costs are the total 

payments associated with the upgraded EE product, mostly subsidies paid to the participating 

households, 33 and do not include indirect program costs such as administration, advertisement 

and training. We calculate the cost per kWh saved using the program direct cost for each product 

and then divide it with the total life-cycle savings. For the total electricity saved, we use annual 

savings times the estimated average life cycle reported in the program data at the zero discount 

rate (Table 9 Column 4). We do not report savings for products that do not yield significant 

savings.  

*** 

 
33 Some retrofits are implemented through a so-called “direct install” program. Direct install programs give 
subsidies to approved contractors to “directly install” energy efficient products for EE participants. In the program 
data, the direct program cost may be recorded as labor cost and material cost in this case. Incentives could be direct 
payment to the utility customers, or through indirect subsidy to the distributor and contractors. 
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[Insert Table 13 Here] 

*** 

Based on this assumption, we find that pool pump and water heating are the most cost-

effective type of EE upgrade programs ($0.015 per kWh saved, and to $0.001 per kWh saved, 

respectively), while HVAC and the whole house retrofits are relatively more costly ($0.18 per 

kWh saved, $1 per kWh saved, respectively). The magnitude of those estimates is consistent 

with the literature. For example, Liang et al. (2017) estimate that cost per kWh saved is $0.434 

for residential buildings under a 5% discount rate. This number is comparable to our cost per 

kWh saved estimate for HVAC with similar assumption and similar type of upgrade ($0.42 in 

Table 13 Column 7). Estimates from information behavioral programs, such as those from 

Opower, provide an average cost $0.025 per kWh saved (Allcott, 2011). These figures indicate 

that while pool pump, refrigeration, and water heating are comparable to these behavioral 

programs and may yield a more persistent result in the long run; other types of energy efficiency 

upgrades are less cost-effective than the non-price based behavioral interventions.  

As cost-effectiveness analysis is sensitive to the assumptions we make, we also calculate 

the cost per kWh saved based on different assumptions—with 5% discount rate, 5-year life cycle, 

and 20-year acceleration rate (Table 9 Column (4) to (7) respectively). This simple calculation 

allows us to compare cost-effectiveness across programs. For example, under the assumptions of 

a 5% discount rate and 5-year acceleration, we calculate the cost per kWh saved based on the 

average program costs per upgrade divided by the net present value of 5-year kilowatt-hour 

savings. With the most pessimistic estimates, pool pump, water heating and audits cost less than 

$0.03 per kWh saved. With the most generous estimates, given a 20-year life-cycle savings and 

zero discount rate, HVAC upgrade costs $0.09 per kWh saved, and the whole house retrofit 

programs cost $0.697 per kWh saved. We nonetheless recognize the limitation that we quantify 

the cost-effectiveness based on the stated policy goal, reducing carbon emissions through 

reduced energy consumption. There may be other cobenefits associated with those upgrades, 
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such as home comfort or health improvement, that are not quantified in the cost-effectiveness 

analysis.34  

VIII. Robustness Checks 

One important assumption for this difference in difference estimation is that in the absence 

of the program, the matched non-participants should have a similar electricity consumption 

pattern to EE participants after controlling for those household-month and time fixed effects—

there is a parallel time trend between participants and non-participants had there been no 

programs. This assumption is not directly testable. Yet, we can assess the robustness of our 

results by adding a time trend variable—a similar test as in Davis et al. (2014). For EE 

participants, we assign them the number of months since January 2010, and for non-participating 

households, the value is equal to zero for all months. This helps us to control for the differential 

trend between participants and non-participants, if any. We report our results including time 

trend variables in Appendix Table A3, in linear form, in quadratic form, and in cubic form. The 

results, especially for those more effective programs (pool pumps and refrigeration) are not 

sensitive to adding the time trend variable, leading to 13% savings, and 6% savings, respectively, 

which are the same as our main result.   

Table A4 column 2 shows another robustness check by dropping the exact month of 

participation. This robustness check addresses two potential concerns. First, the actual 

installation time may take few hours to a month to be effective, so this alternative specification 

allows a lag for the treatment–similar to the replacement time assumption in Davis et al. (2014). 

Second, there may be a selection bias that people pick the “peaky” month of the year where 

electricity usage is the highest to upgrade their house. Even though we think that this bias is 

unlikely given our household-month fixed effects, there may be an extreme case where, for 

example, households systematically upgrade their appliances during the record high peak usage 

month throughout the study period, leading to overestimated saving impact. The results in Table 

 
34 For example, HVAC and whole house retrofit programs may generate side benefits such as home comfort. 
However, we did not measure that because these side benefits are not the main policy goals of those programs, and 
measuring those side-benefits requires additional innovative data and approach. There may also be health benefit 
associating with less electricity generation and indoor/outdoor air quality and temperature. This type of analysis is 
out of our scope of analysis as it requires extra modeling and data collection. 
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A4 Column 2 are consistent with the main specification, confirming that the above issues are not 

a concern. 

We also consider whether those who have solar panels may exhibit unusual electricity 

consumption patterns in their billing data. We thus validate the main results by dropping those 

who may have solar panels (results shown in Table A4 Column 3 in the Appendix). In general, 

SCE offers a net energy metering policy that tracks the net difference between the amount of 

electricity produced and the amount of electricity consumed. The amount will be directly 

reflected on the bill. For example, if in a given month, the household produced more electricity 

than it consumed, there will appear to be a negative number (e.g. -100 kWh) on their bill. Given 

that households that participate in the EE programs may in the meantime be more likely to install 

solar panels, we re-ran the same model as in Table 7 Column 4 by dropping those who may have 

installed solar panels. The limitation is that there are no good data to directly identify households 

with solar panels at the utility account level.35 Therefore, we identify households who have any 

negative number in any of the months during the study period, as those with solar panels. We 

spot-checked this algorithm by verifying those identified households’ addresses and their Google 

image to make sure that this algorithm is not simply identifying data recording errors. Based on 

the result in Column (3) Table A4, all the coefficient magnitude and the significance level for all 

products are consistent with our main specification.   

Table A4 Column 4 presents the same estimated regression as the main result in Table 6 

Column 4 using only participating households. The idea here is to compare those who have 

participated earlier with those who have participated later as one may think that those earlier 

participants are a better counterfactual group than those who have never participated. The 

coefficients are similar to the main specification.36 This result indicates that the program impact 

is mainly determined by the within-household variation. That said, even though we are not able 

to select the perfect counterfactual through a randomized control trial, our result is not sensitive 

to this limitation. We ran 11 separate regressions to estimate program impact for each type of 

 
35 The best available solar panel information is aggregated at the zip code level. Since we already matched our 
households by the building characteristics at the account level and various social-demographic data at the census 
block group level, this information at the zip code level will be too coarse to provide useful variation. 
36 Lighting programs are more effective in this specification, but the magnitude is still pretty small as the previous 
result suggested. 
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upgrade one by one without controlling for overlapping upgrade. Comparing with our result in 

Table 7 Column 4 (presented here in Column 1 Table A5), we find that most results are 

consistent, except for lighting and water heating programs. The program impacts are slightly 

overestimated if we do not control for other product types. This result again stresses the need for 

controlling for overlapping program impact—one of our important contributions in the paper. 

IX. Conclusion  

Given the large amount of public funding spent on promoting energy efficiency upgrades, 

our analysis adds credible empirical evidence about the effectiveness of ongoing EE programs. 

Overall, our results, based on all programs providing cash incentives in SCE service territory, 

point to around 4 percent savings. However, some programs perform better than others. For 

example, programs subsidizing pool pumps and refrigeration lead to larger savings (12% and 

6%, respectively), and this positive program impact is persistent throughout the year. Other 

programs giving incentives for appliance upgrades (mostly dishwasher and clothes washer), 

whole house retrofit, and building shell have concerns regarding rebound effects.   

In addition, the results highlight the importance of incorporating measured electricity 

consumption in program evaluations, as we found discrepancies between engineering estimates 

and actual measured savings. For example, the CPUC’s overall impact evaluation report claims 

that lighting programs could deliver large savings based on engineering estimates. However, this 

is not what we find using our data on electricity usage. Some of the overestimations in 

engineering models may be explained by the way the programs were implemented. For example, 

programs giving away light bulbs are associated with very noisy and non-significant saving 

outcomes.  

It is also notable that some programs cause greater usage of electricity.  Cash incentives for 

HVAC retrofit and dishwasher or clothes washer upgrades may induce a behavioral rebound 

effect where consumers use more energy or spend more on larger or more powerful units when 

their per unit cost of energy service is cheaper. Unfortunately, we do not have pre-program 

appliance ownership and usage data to directly disentangle different mechanisms of the rebound 

effect. Yet, through building characteristics data, we find heterogeneous effects that may drive 
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the rebound effects on HVAC and dishwasher upgrade programs. Energy savings are not 

delivered in older houses that upgrade HVAC.  

Our study highlights the potential for improving EE program effectiveness by choosing the 

appropriate subsidy for different products. The results also indicate that policymakers should 

reconsider the allocation of funds not simply based on engineering models, but directed toward 

programs that generate larger measured impacts. For example, lighting programs, which are 

promoted as an effective energy efficiency upgrade worldwide, may only have minor effects on 

energy savings in California. Finally, if some programs do not deliver expected energy savings, 

policymakers should reconsider their policy goals and the targeted population vs. actual 

participants in these programs. Some upgrade programs, such as HVAC, whole house retrofit, 

and dishwasher incentives, may generate side benefits such as home comfort and convenience, 

but progress toward the overall environmental target of reducing electricity consumption may be 

questionable.  

It is worth noting that one limitation of this analysis results from the categorization of 

some product types, for example, HVAC upgrades do not clearly distinguish between AC units 

and heating systems. The inability to distinguish two separate energy delivery systems limits our 

ability to evaluate the effectiveness of HVAC measures. Therefore, for future evaluation 

purposes, we recommend creating a more expressive classification field in the program data. 

This classification could be similar to the “technology category” as defined in the Building 

Energy Data Exchange Specification (BEDES), a dictionary of terms developed by the U.S. 

Department of Energy for stakeholders making important energy investment decisions. We 

recommend that within this classification scheme, categories such as HVAC, which represent a 

broad collection of energy services (i.e. heating, ventilation, cooling), should be broken down 

into individual categories. Each of these categories could then be separately analyzed for 

performance/effectiveness. Furthermore, while electricity is a major energy source for residential 

homes in the US, natural gas is also a significant source of energy consumption. In future work, 

it will be useful to evaluate the impacts of subsidy programs on natural gas consumption. 

Our analysis draws attention to some important avenues for future research. As our focus 

of this study is on the savings impact of various EE upgrade incentives, the low take-up of 

energy efficiency programs is still puzzling. We need to better understand how different program 



33 
 

designs affect adoption rates. For example, pool pump programs may have great savings 

potential, but low adoption potential in a low-income neighborhood, while HVAC and whole 

house retrofit programs may exhibit greater adoption potential for low-income families, and 

generate larger side benefits, such as home comfort. To better understand this distributional 

effect, we would need to conduct household-level surveys and incorporate these results into 

electricity consumption data. For example, there is room for future research to examine the 

optimal cost-sharing amount for low income households as compared to high income household.   

Furthermore, we find that some incentive programs for energy efficiency  upgrades are 

relatively more cost-effective than behavioral programs, and may generate more persistent long-

term saving results. While we compare our cost-effectiveness figures with the literature through 

similar calculations, prospective work is needed to directly compare energy efficiency programs 

and other types of behavioral programs through large-scale randomized controlled trials. 
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Figures and Tables

Figure 1: Average Electricity Consumption Pattern among Energy Efficiency Program Par-
ticipants and Non-participants

Note: This figure plots the average monthly electricity consumption by calender month for 1) those who have ever participated
in the energy efficiency programs (EE participants), 2) all the households who have never participated in the programs.
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Figure 2: Changes in Normalized Differences after Matching

Note: Matches are found through 1 to 1 covariate matching with replacement on the Mahalanobis metric. Exact matches are
required on building use type (single family, multi-family, condo, etc), vintage bins, climate zone, square footage percentile
(only for single and multi-family housing). Other matching covariates are from the census block group level variables, such
as median income, density, poverty, white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate, and
also variables at the account level including, whether homeowner or not, geographic location—XY coordinates, whether the
household is registered under CARE/FERA–energy discount programs for low income households, and whether the household
is identified as having a pool or not. Normalized difference is the difference in average covariate values, divided by the square
root of the sum of variances for both groups (Imbens and Wooldridge 2009).
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Figure 3: Impact of Energy Efficiency Programs on Electricity Consumption
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Note: This figure plots the point estimates and the 95 percent confidence intervals from event study regressions of electricity
consumption by quarter before and after an energy efficiency upgrade based on the quasi-experimental estimates reported in
column (4) of Table 7. Time is normalized relative to the month each household undertook its first upgrade. The dependent
variable in all regressions is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours and the regressions
include household fixed effects and time fixed effects. Standard errors are clustered at the building level. Estimations are
based on matching EE participants with those who have never participated in the programs in the following variables: exact
match on building type (single family, multi-family, condo, etc), vintage bin, climate zone, square footage percentile (only for
single and multi-family housing), also fuzzy nearest distance matching on variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age, % of ownership, % of occupancy rate, whether homeowner also resident or not,
geographic location—XY coordinates, whether household is registered under CARE/FERA–energy discount programs for low
income households, and whether the household is identified as having a pool or not. Mean pretreatment electricity consumption
is 710 kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors
are clustered at the building level.
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Figure 4: Energy Efficiency Overall Regression Result

Note: Each figure plots estimated coefficients and ninety-fifth percentile confidence intervals corresponding to an indicator
variable for households that have participated in the EE program, one for each type of program. The dependent variable in
all regressions is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours and the regressions include
household-month fixed effects and time fixed effects. Standard errors are clustered at the building level. Estimations are
based on matching EE participants with those who have never participated in the programs in the following variables: exact
match on building type (single family, multi-family, condo, etc), vintage bin, climate zone, square footage percentile (only for
single and multi-family housing), also fuzzy nearest distance matching on variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age, % of ownership, % of occupancy rate, whether homeowner also resident or not,
geographic location—XY coordinates, whether household is registered under CARE/FERA–energy discount programs for low
income households, and whether the household is identified as having a pool or not.
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Figure 5: Percent Change in Electricity Consumption by Product and Month

Note: Each figure plots estimated coefficients and ninety-fifth percentile confidence intervals corresponding to an indicator
variable for households that have participated in the EE program, one for each month. The dependent variable in all regressions
is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours and the regressions include household-month
fixed effects and time fixed effects. Standard errors are clustered at the building level. Estimations are based on matching EE
participants with those who have never participated in the programs in the following variables: exact match on building type
(single family, multi-family, condo, etc), vintage bin, climate zone, square footage percentile (only for single and multi-family
housing), also fuzzy nearest distance matching on variables, such as median income, density, poverty, white, black, Asian,
Hispanic, education, age, % of ownership, % of occupancy rate, whether homeowner also resident or not, geographic location—
XY coordinates, whether household is registered under CARE/FERA–energy discount programs for low income households,
and whether the household is identified as having a pool or not.
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Table 1: Comparison across Current Studies

Study EE program Study sample/Method Time
Control for
multiple
programs

Building-level
heteregeneity

Savings

Achieved
savings
from
ex-ante
prediction

Our study* 20+ SCE upgrading programs
10+ million households in
California, matching, DID, and
fixed effects panel regression

2010-2014
(5-year
monthly)

Yes Yes See results in Figure 6

Scheer et al. (2013) Insulation upgrade 210 households in Ireland, DID 2008-2010 No No 21% 36%

Davis et al. (2014) Appliance replacement
1.9 million Mexican households,
DID and fixed effects panel
regression

2009-2012
(2-year
monthly)

No No

8% for refrigerator
(11kWh per month);
no savings for
air-conditioner
replacement

25%

Hong et al. (2014)
Cavity wall insulation, loft
insulation,draught stripping, and
energy-efficient heating system

1372 England households,
ordinary least squares regression

Comparing two
successive
winters of
2001/2002 and
2002/2003

No Yes

10% in centrally
heated homes and
17%in noncentrally
homes

N/A

Adan and Fuest (2015)
Cavity wall insulation, loft
insulation,and a new efficient
boiler

3 million UK households,
matching and DID

2010-2012
(yearly)

No No

8% for cavity wall
insulation; 5.2% for
anew boiler; 1.8% for
loft insulation

N/A

Fowlie et al. (2015)*
Weatherization Assistance
Program (WAP)

34,161 low-income households in
Michigan, RCT+fixed effects
panel regression

2011-2014
(monthly)

No No 10-20% 40%

Zivin and Novan
(2016)

The Energy Savings Assistance
Program

275 low-income households in
San-Diego, RCT+ fixed effects
panel regression

Nov 2011-Sep
2012

No No 7% 79%

Allcott and
Greenstone (2017)*

Residential energy efficiency
programs

101,881 Wisconsin households,
panel data, RCT to estimate
structural welfare equation

2006-2015
(monthly )

No Yes 8.5% 58%

(audit and then retrofit)

Boomhower and Davis
(2017)*

Quality installation program
≈6000 households in California,
fixed effects panel regression

Jan 2012-April
2015 (hourly
data)

No No 36.5 kWh monthly N/A

(air-conditioner rebate)

Liang et al. (2017) Energy efficiency retrofits

201 residential and 636
commercial buildings,
matching+fixed effects panel
regression

January 2008
to April 2013

No Yes
12% commercial, 8%
residential

36%

Note: papers with a star are non-published working papers. DID refers to difference in difference method.
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Table 2: Energy Efficiency Technologies

Appliance
Consumer
Electronics

HVAC Lighting
Pool

Pump
Refrigeration

Water
Heating

Audit
Whole
House

Retrofits

Building
Shell

Other Total
Program

cycle

Desert Cities Energy Leader Partnership 0 0 3 15 342 0 0 0 0 0 59 419 2010-2012
Palm Desert Demonstration Partnership 0 0 1,840 1,508 688 73 0 0 0 0 1,779 5,888 2010-2012
Home Energy Efficiency Survey Program 0 0 0 127,016 0 0 125,565 0 0 0 283,008 535,589 2010-2012
Home Energy Efficiency Rebate Program 6 37 5,431 0 13,019 99,693 314 0 0 0 14 118,514 2010-2012
Appliance Recycling Program 0 0 0 0 0 149,282 0 0 0 0 0 149,282 2010-2012
Business and Consumer Electronics Program 0 107 0 0 0 0 0 0 0 0 0 107 2010-2012
Multifamily Energy Efficiency Rebate
Program

3 0 89 117,859 0 1,040 52 0 0 0 784 119,827 2010-2012

Whole House Prescriptive Program 0 0 0 0 0 0 0 0 0 0 21 21 2010-2012
California Advanced Homes 2,440 0 171 1 0 1,680 0 0 0 0 3,760 8,052 2010-2012
ENERGY STAR Residential Quality
Installation Program

0 0 4,218 0 0 0 0 0 0 0 0 4,218 2010-2012

Residential Quality Maintenance and
Commercial Quality Maintenance
Development

0 0 1,776 0 0 0 0 0 0 0 0 1,776 2010-2012

Comprehensive Mobile Home 0 0 2,820 8,002 0 1 0 0 0 0 0 10,823 2010-2012
Comprehensive Home Performance 0 0 0 0 0 0 0 0 0 0 518 518 2010-2012
Coin Operated Laundry Program 11 0 0 184 0 0 0 0 0 0 0 195 2010-2012
California Statewide Program for Residential
Energy Efficiency

13,561 364 8,161 71,700 18,915 108,232 3,597 219,478 5,893 1,648 0 451,549 2013-2015

Comprehensive Home Performance 0 0 0 0 0 0 0 0 0 0 518 518 2013-2015
Comprehensive Manufactured Homes 0 0 9,512 11,069 12 1 0 0 0 0 0 20,594 2013-2015
Energy Leader Partnership Program 0 0 1,786 845 1,104 0 0 75 0 4 1,533 5,347 2013-2015
Lighting Program 0 0 0 5,433 0 0 0 0 0 0 0 5,433 2013-2015
New Construction Program 2552 0 171 1 0 1,756 0 0 3,199 0 3,759 11,438 2013-2015
Residential & Commercial HVAC Program 0 0 4,959 0 0 0 0 0 0 0 0 4,959 2013-2015
Residential Energy Efficiency Program 10 144 5,511 249,487 13,015 248,084 125,936 0 0 13 283,803 926,003 2013-2015
SCG Co-Fund 12461 0 856 0 0 0 0 0 0 2,989 0 16,306 2013-2015
Statewide Commercial Energy Efficiency
Program

0 0 225 0 0 0 0 0 0 0 0 225 2013-2015

Total 31,044 652 47,529 593,120 47,095 609,842 255,464 219,553 9,092 4,654 579,556

Note: The number represents the total count of unique participating household.
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Table 3: Energy Efficiency Program by Type of Subsidies

Product Up or mid stream Downstream rebate Free/give away Number of subsidy claims
Appliance 194 162,355 0 162,549
Consumer Electronics 73,077 0 364 73,441
HVAC 381 24,444 60,817 85,642
Lighting 66,343 340,052 977,979 1,384,374
Pool Pump 6,924 35,826 136 42,886
Refrigeration 0 332,400 0 332,400
Water Heating 0 1,106 269,059 270,165
Audits 0 224,361 76 224,437
Whole House Retrofit 6,872 2,459 0 9,331
Building Shell 0 5,526 0 5,526
Other 0 5,896 293,012 298,908

Total 153,791 1,134,424 1,601,444 2,889,659
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Table 4: Data Source

Data
Temporal
coverage

Source Unit of analysisl

Electricity monthly consumption (kwh) 2010-2014 LA Energy Atlas Utility account level

Energy Efficiency programs 2010-2015 LA Energy Atlas, SCE Utility account level

Building characteristics (vintage, square
footage, homeowner type, etc)

2012 and
2016

California Assessor Parcel level

Block level demographics (income,
population density, education, age, race,
occupancy rate, etc)

2006-2010
5-year
estimate

US Census American
Community Survey
(ACS)

Census block group
level

Note: LA Energy Atlas is a relational database that enhances understanding of energy usage across LA County. The interactive website provides information of energy
usage in LA county, and can be accessed here: http://www.energyatlas.ucla.edu/. This study uses its back-end raw data for the analysis.
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Table 5: Summary Statistics

Mean SD Min Max

Condo 0.12 0.32 0 1
Mixed use 0.01 0.07 0 1
Multi family 0.33 0.47 0 1
Residential other 0.02 0.14 0 1
Single family 0.53 0.50 0 1

Built before 1950 0.17 0.38 0 1
Built 1950-1978 0.45 0.50 0 1
Built 1979-1990 0.20 0.40 0 1
Built after 1990 0.17 0.37 0 1

Climate zone 6 0.19 0.39 0 1
Climate zone 14 0.09 0.29 0 1
Climate zone 15 0.03 0.16 0 1
Climate zone 16 0.01 0.09 0 1
Climate zone 8 0.22 0.41 0 1
Climate zone 9 0.25 0.43 0 1
Climate zone 10 0.21 0.41 0 1

Square footage (single family) 1,994 5,646 0 235,243
Home owner also resident 0.32 0.46 0 1
% of people with pool 0.13 0.34 0 1
% of people under CARE/FERA 0.22 0.41 0 1
Median income 66,228 31,595 6,063 250,001
Population density per sq. mile 9,798 8,376 0 102,716
Population under poverty 348 358 0 4,068
Total population: white 1,298 916 0 7,776
Total population: black 173 290 0 2,398
Total population: Asian 293 418 0 3,940
Total population: Hispanic 950 870 0 7,961
% of population with at least a bachelor degree 0.43 0.34 0 1
% of home owner 0.54 0.27 0 1
Occupancy rate 0.93 0.09 .05 1
Age 36.44 8.64 10.9 81.5
Total observations 11,042,015
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Table 6: Summary Statistics: Energy Efficiency Program Participants and Non-Participants

All
Non-EE
partici-
pants

EE partici-
pants

Matched
non-EE

participants

Normalized
difference (3)

versus (2)

Normalized
difference (3)

versus (4)
(1) (2) (3) (4) (5) (6)

Account-level
Square footage 1,994 1,996 1,981 2,007 -0.002 -0.004

(5646) (5819) (3843) (5377)
% Home owner also resident 32% 30% 53% 44% 0.335 0.146

(0.46) (0.46) (0.50) (0.50)
% of people with pool 13% 13% 18% 14% 0.099 0.071

(0.34) (0.33) (0.38) (0.35)
% of people under CARE/FERA 22% 21% 38% 34% 0.281 0.058

(0.41) (0.40) (0.49) (0.48)

Census blockgroup
Median income 66,229 65,428 75,487 70,148 0.215 0.117

(31595) (31176) (34782) (34936)
Population density per sq. mile 9,798 9,958 7,944 7,969 -0.183 -0.011

(8376) (8463) (7029) (7424)
Population under poverty 348 354 285 324 -0.142 -0.090

(358) (361) (317) (355)
Total population: white 1,298 1,293 1,353 1,308 0.047 0.036

(916) (917) (911) (866)
Total population: black 173 176 142 153 -0.087 -0.035

(290) (292) (256) (263)
Total population: Asian 293 290 329 276 0.065 0.087

(418) (416) (445) (407)
Total population: Hispanic 950 959 844 855 -0.097 -0.014

(870) (875) (810) (811)
% of population with at least a bachelor degree 43% 42% 47% 44% 0.110 0.067

(0.34) (0.33) (0.33) (0.34)
% of home owner 54% 53% 63% 60% 0.276 0.117

(0.27) (0.27) (0.26) (0.27)
Occupancy rate 93% 92% 93% 91% 0.064 0.162

(0.09) (0.09) (0.09) (0.13)
Age 36.4 36.3 38.4 38.0 0.172 0.041

(8.6) (8.6) (9.2) (9.3)
Observations 11,042,015 10,163,364 878,651 817,585

Note: standard deviations are in parenthesis Matches are found through 1 to 1 covariate matching with replacement on the
Mahalanobis metric. Exact matches are required on building use type (single family, multi-family, condo, etc), vintage bins,
climate zone, square footage percentile (only for single and multi-family housing). Other matching covariates are from the
census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. %
of ownership % of occupancy rate, and also variables at the account level including, whether homeowner or not, geographic
location—XY coordinates, whether the household is registered under CARE/FERA–energy discount programs for low income
households, and whether the household is identified as having a pool or not. Normalized difference is the difference in average
covariate values, divided by the square root of the sum of variances for both groups (Imbens and Wooldridge 2009) The last
two columns give the sum of the normalized differences across all the covariates.
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Table 7: Impact of Energy Efficiency Programs on Electricity Usage

2010-2014 2010-2014 2010-2014 2010-2014
VARIABLES log(usage) log(usage) log(usage) log(usage)

(1) (2) (3) (4)
Appliance 0.0370*** 0.0350*** 0.0255*** 0.0255***

(0.0027) (0.0030) (0.0032) (0.0043)
Consumer Electronics -0.0017 0.0190 -0.0108 -0.0108

(0.0205) (0.0250) (0.0284) (0.0285)
HVAC 0.0054** 0.0131*** -0.0030 -0.0030

(0.0021) (0.0029) (0.0026) (0.0029)
Lighting -0.0038*** -0.0079*** -0.0042*** -0.0042

(0.0012) (0.0013) (0.0015) (0.0026)
Pool Pump -0.1186*** -0.1222*** -0.1266*** -0.1266***

(0.0019) (0.0022) (0.0023) (0.0023)
Refrigeration -0.0639*** -0.0684*** -0.0617*** -0.0617***

(0.0007) (0.0008) (0.0009) (0.0009)
Water Heating -0.0100*** -0.0126*** -0.0135*** -0.0135***

(0.0016) (0.0018) (0.0021) (0.0030)
Audits -0.0207*** -0.0224*** -0.0268*** -0.0268***

(0.0008) (0.0008) (0.0010) (0.0010)
Whole House Retrofit 0.0275*** -0.0086 0.0147** 0.0147**

(0.0052) (0.0067) (0.0065) (0.0065)
Building Shell 0.0242*** 0.0238*** 0.0197*** 0.0197**

(0.0045) (0.0046) (0.0054) (0.0085)
Other -0.0411*** -0.0417*** -0.0432*** -0.0432***

(0.0006) (0.0007) (0.0007) (0.0007)
Household and county-year-month fixed effect Yes No No No
Household and city-time fixed effect No Yes No No
Household-month fixed effects No No Yes Yes
Month-year fixed effects No No Yes Yes
Observations 51,441,373 42,863,329 51,441,373 51,441,373
R-squared 0.8038 0.8206 0.9009 0.9009
Overall Savings
Effect on log(kWh per month) -0.0401***

(0.0005)
Effect on kWh per month -25.929***

(0.525)

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from four
separate regressions. The coefficients of interest are indicator variables for households who have participated in the EE upgrade
financial incentive programs for that specific product (i.e. Lighting, HVAC, etc.). In all regressions, the dependent variable
is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching EE
participants with those who have never participated in the programs in the following variables: exact match on building type
(single family, multi-family, condo, etc), vintage bin, climate zone, square footage percentile (only for single and multi-family
housing), also fuzzy nearest distance matching on variables, such as median income, density, poverty, white, black, Asian,
Hispanic, education, age, % of ownership, % of occupancy rate, whether homeowner also resident or not, geographic location—
XY coordinates, whether household is registered under CARE/FERA–energy discount programs for low income households,
and whether the household is identified as having a pool or not. Standard errors are clustered at the household level for the
first all three regressions, reported in columns (1) to (3). Mean pretreatment electricity consumption is 710 kilowatt hours
per month for households who have ever participated in the energy efficiency programs. Standard errors are clustered at the
building level for the last regression, reported in column (4). Specification using city-time fixed effects have fewer observations
because households at the city boundaries are dropped.
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Table 8: Comparison of the Impact of Energy Efficiency Programs on Electricity Usage with
Ex-ante Estimates

2010-2014 2010-2014
Changes in monthly electricity usage (kWh)

VARIABLES measured with billing data utility engineering estimates
Appliance 5.004** -14.19

(2.123)
Consumer Electronics -28.336 -15.55

(20.324)
HVAC -14.241*** -21.89

(1.555)
Lighting -0.313 -4.25

(1.001)
Pool Pump -123.979*** -42.17

(1.914)
Refrigeration -32.335*** -53.25

(0.475)
Water Heating -11.243*** -0.22

(1.329)
Audits -24.017*** -10.59

(0.657)
Whole house retrofit -10.514*** -55.35

(3.865)
Building Shell 0.770 -5.19

(4.944)
Other -26.212*** -10.59

(0.467)
Household-month fixed effects Yes
Month-year fixed effects Yes
Observations 51,570,259
R-squared 0.9699

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses). The
coefficients of interest are indicator variables for households who have participated in the EE upgrade financial incentive
programs for that specific product (i.e. Lighting, HVAC, etc.). In almost all the regressions (except the first estimate in Panel
B), the dependent variable is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are
based on matching EE participants with those who have never participated in the programs in the following variables: exact
match on building type (single family, multi-family, condo, etc), vintage bins, climate zone, square footage percentile (only for
single and multi-family housing), also fuzzy nearest distance matching on census block group level variables, such as median
income, density, poverty, white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching
covariates are from the census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic,
education, age. % of ownership % of occupancy rate, and also variables at the account level including, whether homeowner or
not, geographic location—XY coordinates, whether the household is registered under CARE/FERA–energy discount programs
for low income households, and whether the household is identified as having a pool or not. Mean pretreatment electricity
consumption is 710 kilowatt hours per month for households who have ever participated in the energy efficiency programs.
Standard errors are clustered at the building level. Ex-ante savings are reported using the median value.
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Table 9: Impact of Energy Efficiency Programs on Electricity Usage by Financial Incentives

2010-2014 2010-2014
VARIABLES log(usage) log(usage)

HVAC*Up/mid-stream Financial Support 0.0895 0.0954
(0.1526) (0.1579)

HVAC*Rebate (medium financial support) 0.0003 0.0004
(0.0033) (0.0033)

HVAC*Give Away (large financial support) -0.0085** -0.0088*
(0.0041) (0.0051)

Lighting*Up/mid-stream Financial Support -0.0115 -0.0255
(0.0089) (0.0196)

Lighting*Rebate (medium financial support) -0.0303** -0.0378**
(0.0112) (0.0159)

Lighting*Give Away (large financial support) -0.0031* -0.0042
(0.0016) (0.0032)

Pool Pump*Up/mid-stream Financial Support -0.1167*** -0.1191***
(0.0073) -0.0068

Pool Pump*Rebate (medium financial support) -0.1280*** -0.1277***
(0.0025) (0.0025)

Pool Pump*Give Away (large financial support) -0.1224** -0.1233**
(0.0487) (0.0487)

HH-month fixed effects Yes Yes
Month-year fixed effects Yes Yes
Controlling for ex-ante saving estimates for lighting No Yes
Observations 51,441,373 51,438,641
R-squared 0.9009 0.9009

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from one
regression. The coefficients of interest are indicator variables for households who have participated in the EE upgrade financial
incentive programs for that specific product (i.e. Lighting, HVAC, etc.). In all regressions, the dependent variable is the natural
log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching EE participants with
those who have never participated in the programs in the following variables: exact match on building type (single family,
multi-family, condo, etc), vintage bins, climate zone, square footage percentile (only for single and multi-family housing), also
fuzzy nearest distance matching on census block group level variables, such as median income, density, poverty, white, black,
Asian, Hispanic, education, age, % of ownership % of occupancy rate; Other matching covariates are from the census block
group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. % of ownership
% of occupancy rate, and also variables at the account level including, whether homeowner or not, geographic location—XY
coordinates, whether the household is registered under CARE/FERA–energy discount programs for low income households,
and whether the household is identified as having a pool or not. Standard errors are clustered at the building level. All other
types of EE upgrades are controlled but the estimated coefficients are not reported because there is no enough variation in
financial support to distribute those products. The other controlled products are appliance, consumer electronics, refrigeration,
water heating, audits, building shell, and other. Mean pretreatment electricity consumption is 710 kilowatt hours per month
for households who have ever participated in the energy efficiency programs. Standard errors are clustered at the building level.
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Table 10: Impact of Energy Efficiency Programs on Electricity Usage (by Income Group)

VARIABLES log(usage) log(usage)
below median income above median income

(1) (2)

Appliance 0.0379*** 0.0205***
(0.0106) (0.0037)

Consumer Electronics 0.0014 -0.0416
(0.0331) (0.0552)

HVAC -0.0083** 0.0031
(0.0038) (0.0043)

Lighting -0.002 -0.0129**
(0.0031) (0.0051)

Pool Pump -0.121*** -0.1275***
(0.0054) (0.0026)

Refrigeration -0.0609*** -0.0626***
(0.0015) (0.0012)

Water Heating -0.0128** -0.0024
(0.0043) (0.0053)

Audits -0.0187*** -0.0336***
(0.0015) (0.0013)

Whole House Retrofit 0.0029 0.0202***
(0.0127) (0.0075)

Building Shell 0.0204 0.0197**
(0.0191) (0.0077)

Other -0.038*** -0.0478***
(0.0012) (0.0009)

HH-month fixed effects Yes Yes
Month-year fixed effects Yes Yes
Observations 25,706,477 25,733,850
R-squared 0.9011 0.8911

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from four
separate regressions. The coefficients of interest are indicator variables for households who have participated in the EE upgrade
financial incentive programs for that specific product (i.e. Lighting, HVAC, etc.). In all regressions, the dependent variable
is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching EE
participants with those who have never participated in the programs in the following variables: exact match on building type
(single family, multi-family, condo, etc), vintage bins, climate zone, square footage percentile (only for single and multi-family
housing), also fuzzy nearest distance matching on census block group level variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching covariates are from the
census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. %
of ownership % of occupancy rate, and also variables at the account level including, whether homeowner or not, geographic
location—XY coordinates, whether the household is registered under CARE/FERA–energy discount programs for low income
households, and whether the household is identified as having a pool or not. Mean pretreatment electricity consumption is 710
kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors are
clustered at the building level.

51



Table 11: Impact of Energy Efficiency Programs on Electricity Usage (by Square Footage &
Vintage)

Square footage Vintage

VARIABLES log(usage) log(usage) log(usage) log(usage) log(usage)
1st and 2nd quartile 3rd and 4th quartile before 1978 After 1978 All

(1) (2) (3) (4) (5)

Appliance 0.0270*** 0.0217*** 0.0256*** 0.0265*** 0.0255***
(0.0051) (0.0045) (0.0048) (0.0081) (0.0032)

Consumer Electronics -0.0183 -0.0672 0.0270 -0.0361 -0.0109
(0.0345) (0.0601) (0.0470) (0.0377) (0.0284)

HVAC 0.0078 -0.0045 0.0180*** -0.0151*** -0.0029
(0.0048) (0.0048) (0.0061) (0.0038) (0.0026)

Lighting -0.0028 -0.0104 -0.0100*** 0.0022 -0.0042***
(0.0056) (0.0095) (0.0036) (0.0045) (0.0015)

Pool Pump -0.1199*** -0.1249*** -0.1193*** -0.1321*** -0.1266***
(0.0044) (0.0027) (0.0036) (0.0032) (0.0023)

Refrigeration -0.0644*** -0.0567*** -0.0651*** -0.0569*** -0.0617***
(0.0013) (0.0015) (0.0012) (0.0016) (0.0009)

Water Heating -0.0124** -0.0109 -0.0056 -0.0239*** -0.0134***
(0.0060) (0.0097) (0.0041) (0.0050) (0.0021)

Audits -0.0122*** -0.0509*** -0.0178*** -0.0466*** -0.0268***
(0.0013) (0.0017) (0.0012) (0.0018) (0.0010)

Whole House Retrofit 0.0051 0.0272*** -0.0252*** 0.0501*** 0.0159**
(0.0084) (0.0098) (0.0091) (0.0100) (0.0065)

Building Shell 0.0170** 0.0153 0.0202** -0.0047 0.0198***
(0.0077) (0.0098) (0.0090) (0.0193) (0.0054)

Other -0.0337*** -0.0582*** -0.0371*** -0.0514*** -0.0432***
(0.0010) (0.0011) (0.0010) (0.0012) (0.0007)

HVAC*Whole House Retrofit -0.0854**
(0.0388)

HH-month fixed effects Yes Yes Yes Yes Yes
Month-year fixed effects Yes Yes Yes Yes Yes
Observations 21,711,211 16,758,811 27,870,510 19,811,271 51,441,373
R-squared 0.8809 0.8773 0.8961 0.9041 0.9009

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from four
separate regressions. The coefficients of interest are indicator variables for households who have participated in the EE upgrade
financial incentive programs for that specific product (i.e. Lighting, HVAC, etc.). In all regressions, the dependent variable
is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching EE
participants with those who have never participated in the programs in the following variables: exact match on building type
(single family, multi-family, condo, etc), vintage bins, climate zone, square footage percentile (only for single and multi-family
housing), also fuzzy nearest distance matching on census block group level variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching covariates are from the
census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. %
of ownership % of occupancy rate, and also variables at the account level including, whether homeowner or not, geographic
location—XY coordinates, whether the household is registered under CARE/FERA–energy discount programs for low income
households, and whether the household is identified as having a pool or not. Mean pretreatment electricity consumption is 710
kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors are
clustered at the building level. The first two regressions are calculated among households living in single family housing.
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Table 12: Impact of Energy Efficiency Programs on Electricity Usage (by Climate Zone)

VARIABLES log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage)
Zone 6 Zone 14 Zone 15 Zone 16 Zone 8 Zone 9 Zone 10

(1) (2) (3) (4) (5) (6) (7)

Appliance 0.0314*** 0.0246 0.0116 -0.0507 0.0141* 0.0147*** 0.0379***
(0.0081) (0.0215) (0.0324) (0.0499) (0.0072) (0.0055) (0.0119)

Consumer Electronics 0.411*** 0.0266 0.1703** 0 0.0092 0.0571 -0.0668*
(0.0009) (0.0712) (0.0808) 0 (0.0569) (0.1186) (0.0386)

HVAC 0.0534*** -0.0095 -0.0108 0.0651 0.0241*** 0.0263** -0.0118***
(0.0169) (0.0097) (0.0081) (0.0447) (0.0078) (0.0102) (0.0037)

Lighting -0.0043 0.0126 -0.0021 -0.0102 -0.0117*** -0.01 -0.0009
(0.0071) (0.0095) (0.0165) (0.0543) (0.0040) -0.0067 (0.0054)

Pool Pump -0.1324*** -0.1004*** -0.1624*** -0.1028*** -0.1255*** -0.1313*** -0.1200***
(0.0073) (0.0113) (0.0094) (0.0232) (0.0056) (0.0044) (0.0042)

Refrigeration -0.0762*** -0.0520*** -0.0372*** -0.0488*** -0.0681*** -0.0626*** -0.0500***
(0.0024) (0.0049) (0.0087) (0.0128) (0.0018) (0.0018) (0.0020)

Water Heating -0.0146*** -0.0390*** -0.0266 -0.0026 -0.0094* 0.0060 -0.0335***
(0.0079) (0.0140) (0.0174) (0.0556) (0.0050) (0.0071) (0.0061)

Audits -0.0226*** -0.0712*** -0.0506*** -0.0372*** -0.0233*** -0.0224*** -0.0354***
(0.0022) (0.0049) (0.0071) (0.0096) (0.0018) (0.0018) (0.0024)

Whole House Retrofit 0.0120 0.0155 -0.0058 0.0233 -0.0377** -0.0214** 0.0691***
(0.0526) (0.0453) (0.1312) (0.0684) (0.0168) (0.0101) (0.0095)

Building Shell 0.0197 0.0817 -0.0527 0.0423 0.0295* 0.0085 -0.0081
(0.0167) (0.0615) (0.0650) (0.0827) (0.0175) (0.0105) (0.0141)

Other -0.0505*** -0.0804*** -0.0546*** -0.0440*** -0.0368*** -0.0407*** -0.0436***
(0.0021) (0.0044) (0.0047) (0.0086) (0.0016) (0.0015) (0.0012)

Representative city for climate zone Torrance Palmdale
Palm

Spring-Intl,
Brawley

Blue Canyon,
bishop

Fullerton,
Long Beach

Burbank-
Glendale, LA
(civic center)

Riverside

Heating degree days of representative city 742 2704 1106 4313 1430 1154 1678
Cooling degree days of representative city 568 1998 6565 1037 1201 1537 1456
Household-month fixed effects Yes Yes Yes Yes Yes Yes Yes
Month-year fixed effects Yes Yes Yes Yes Yes Yes Yes
Observations 8,149,366 3,392,804 1,870,775 1,507,676 11,591,442 12,456,559 12,370,785
R-squared 0.9021 0.887 0.9106 0.9155 0.8969 0.8951 0.8949

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from four
separate regressions. The coefficients of interest are indicator variables for households who have participated in the EE upgrade
financial incentive programs for that specific product (i.e. Lighting, HVAC, etc.). In all regressions, the dependent variable
is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching EE
participants with those who have never participated in the programs in the following variables: exact match on building type
(single family, multi-family, condo, etc), vintage bins, climate zone, square footage percentile (only for single and multi-family
housing), also fuzzy nearest distance matching on census block group level variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching covariates are from the
census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. %
of ownership % of occupancy rate, and also variables at the account level including, whether homeowner or not, geographic
location—XY coordinates, whether the household is registered under CARE/FERA–energy discount programs for low income
households, and whether the household is identified as having a pool or not. Mean pretreatment electricity consumption is
710 kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors
are clustered at the building level. The first two regressions are calculated among households living in single family housing.
Climate zones are established by the California Energy Commission (CEC) based on energy use, temprature, weather and other
factors. CEC uses weather data to create representative city for each climate zone.
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Table 13: Cost Effectiveness by Product

VARIABLES
Mean annual

changes in
electricity usage

Average
program

costs

Mean
estimated
useful life

Cost per kWh saved ($)

(kWh per
household)

($ per
upgrade)

(years per
upgrade)

($/kWh)

(1) (2) (3) (4) (5) (6) (7)

Appliance 60 74 8.7 - - - -
Consumer
Electronics

-340 98 9.4 - - - -

HVAC -171 306 9.8 0.186 0.365 0.091 0.42
Lighting -4 67 11.1 - - - -
Pool Pump -1488 194 8.9 0.015 0.026 0.006 0.03
Refrigeration -388 98 8.3 0.030 0.051 0.013 0.06
Water Heating -135 1 9.5 0.001 0.001 0.000 0.001
Audits -288 N/A 3.0 N/A N/A N/A N/A
Whole house retrofit -126 1,759 13.9 1.003 2.788 0.697 3.22
Building Shell 9 81 17.7 - - - -

Cost effectiveness
assumptions
Discount rate 0% 0% 0% 5%

Life cycle (years)

Mean
estimation

per
upgrade

5 20 5

Note: Mean annual changes in electricity usage comes from Table 8. Average program costs include the average direct program costs associated with the type of EE
upgrade. These costs exclude indirect program costs such as administration, advertisement, and training. Mean estimated useful life for each product is calculated
based on the original program claim data. Column (4) to (7) are calculated under different discount rate and life cycle assumptions listed in the below rows. We do not
report cost effectiveness for products that do not yield significant savings.
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Appendix A

Figure A1: Number of Energy Efficiency Participants by Census Block Group
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Table A1: Energy Efficiency Take-up Rate by Subgroup

Mean sd N

User Type condo 5.9% 0.2363 1,311,658
mixed use 3.6% 0.1872 59,101
multi family 4.4% 0.2062 3,599,603
residential other 13.5% 0.3413 226,725
single family 10.4% 0.3053 5,844,928

Vintage pre-1950 5.3% 0.2250 1,745,020
1950-1978 8.3% 0.2760 4,576,872
1978-1990 8.4% 0.2772 2,057,879
post-1990 9.0% 0.2864 1,680,767

Median Income (Block) First quantile (low) 5.5% 0.2284 2,761,917
Second quantile 6.8% 0.2519 2,762,480
Third quantile 7.9% 0.2704 2,761,161
Fourth quantile (high) 11.6% 0.3199 2,755,153

Climate Zone Zone 6 6.6% 0.2484 2,089,485
Zone 14 5.5% 0.2275 992,972
Zone 15 9.4% 0.2913 298,740
Zone 16 7.6% 0.2646 99,387
Zone 8 8.2% 0.2745 2,434,634
Zone 9 7.9% 0.2694 2,767,709
Zone 10 9.9% 0.2990 2,337,081

County Imperial 5.8% 0.2354 86
Los Angeles 6.1% 0.2397 5,785,473
Orange 12.0% 0.3245 1,403,322
Riverside 10.1% 0.3014 1,374,172
San Bernardino 8.3% 0.2760 1,854,404
Ventura 10.2% 0.3026 624,558

Total 8.0% 0.2706 11,042,015
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Figure A2: California Building Climate Zone Areas Map

16

16

16

16

14

1

10

11

12

13

14

15

2

3

4

5

6

7

8
9

Building Climate Zones
California, 2017

Source: California Energy Commission

86

9
16

10

Building Climate Zones

County Boundary

0 100 20050
Miles

Document Path: T:\Projects\CEC\Climate Zones\Building\BuildingClimateZones_Web.mxdDate Saved: 11/15/2017 10:20:43 AM

Source: California Energy Commission http://www.energy.ca.gov/maps/renewable/building_climate_zones.html

57

mailto:http://www.energy.ca.gov/maps/renewable/building_climate_zones.html


Table A2: Impact of Energy Efficiency Programs on Electricity Usage (By Calendar Month)

VARIABLES log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage)
January February March April May June July August September October November December

Appliance 0.0279*** 0.0264*** 0.0215*** 0.0287*** 0.0339*** 0.0238*** 0.0299*** 0.0308*** 0.0342*** 0.0179*** 0.0152*** 0.0191***
(0.0062) (0.0064) (0.0075) (0.0093) (0.0085) (0.0075) (0.0070) (0.0056) (0.0050) (0.0043) (0.0037) (0.0048)

Consumer Electronics -0.0317 0.1159 -0.1109* 0.1367 -0.0716 0.0425 -0.1041 -0.0980 0.0276 -0.0191 -0.0028 0.1086**
(0.1558) (0.1588) (0.0669) (0.1183) (0.1060) (0.1059) (0.0901) (0.0646) (0.0622) (0.0430) (0.0280) (0.0510)

HVAC 0.0016 0.0019 0.0250*** 0.0287*** 0.0273*** 0.0189*** -0.0409*** -0.0744*** -0.0503*** -0.0182*** 0.0150*** 0.0072
(0.0048) (0.0051) (0.0047) (0.0043) (0.0065) (0.0053) (0.0055) (0.0062) (0.0059) (0.0057) (0.0049) (0.0045)

Lighting -0.0151** -0.0178*** -0.0090*** 0.0049 0.0056 0.0032 -0.0040** -0.0072 -0.0055 0.0026 -0.0084** -0.0062
(0.0058) (0.0048) (0.0059) (0.0038) (0.0073) (0.0050) (0.0055) (0.0070) (0.0064) (0.0062) (0.0043) (0.0052)

Pool Pump -0.1166*** -0.1152*** -0.1174*** -0.1395*** -0.1470*** -0.1463*** -0.1336*** -0.1331*** -0.1229*** -0.1479*** -0.1281*** -0.1109***
(0.0032) (0.0035) (0.0038) (0.0036) (0.0040) (0.0038) (0.0036) (0.0035) (0.0034) (0.0034) (0.0030) (0.0031)

Refrigeration -0.0555*** -0.0589*** -0.066*** -0.0724*** -0.0780*** -0.0751*** -0.0659*** -0.0539*** -0.0497*** -0.0646*** -0.0630*** -0.0519***
(0.0014) (0.0014) (0.0017) (0.0015) (0.0016) (0.0016) (0.0016) (0.0016) (0.0017) (0.0015) (0.0014) (0.0015)

Water Heating -0.0003 -0.0058 -0.014*** -0.0329*** -0.0382*** -0.0471*** -0.0379*** -0.0223*** -0.0438*** -0.0697*** -0.0389 -0.0133**
(0.0059) (0.0050) (0.004) (0.0045) (0.0079) (0.0057) (0.0072) (0.0085) (0.0125) (0.0117) (0.0238) (0.0056)

Audits -0.0245*** -0.0265*** -0.0406*** -0.0444*** -0.0449*** -0.0419*** -0.0356*** -0.0320*** -0.0284*** -0.0173*** -0.0169*** -0.0121***
(0.0018) (0.0018) (0.0018) (0.0018) (0.0021) (0.0018) (0.0016) (0.0016) (0.0014) (0.0013) (0.0010) (0.0013)

Whole house retrofit 0.0175 0.0144 0.0041 0.0282*** 0.0248** 0.0608*** -0.0092 -0.0475*** -0.0006 0.0181** 0.0377*** 0.0246**
(0.0112) (0.0101) (0.0107) (0.0100) (0.0120) (0.0117) (0.0104) (0.0107) (0.0099) (0.0085) (0.0078) (0.0102)

Building Shell 0.0208 0.0148 0.0289*** 0.0102 0.0702*** 0.0012 0.0378*** 0.0037 0.0103 0.0170* 0.0243*** 0.0146
(0.0128) (0.0116) (0.0091) (0.0093) (0.0487) (0.0103) (0.0372) (0.0126) (0.0119) (0.0095) (0.0074) (0.0106)

Other -0.0409*** -0.0486*** -0.0499*** -0.0516*** -0.0429*** -0.0443*** -0.0487*** -0.0523*** -0.0372*** -0.0511*** -0.0412*** -0.0318***
(0.0009) (0.0010) (0.0011) (0.0011) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0011) (0.0011) (0.0011)

Household-month fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 4,365,418 4,119,659 4,373,626 4,371,483 4,364,298 4,274,823 4,375,316 4,377,078 4,137,526 4,364,318 4,306,225 4,011,603
R-squared 0.8947 0.9032 0.8952 0.9025 0.8832 0.9047 0.9057 0.9058 0.9144 0.8957 0.9088 0.9091

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from four separate regressions. The coefficients of
interest are indicator variables for households who have participated in the EE upgrade financial incentive programs for that specific product (i.e. Lighting, HVAC,
etc.). In all regressions, the dependent variable is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching
EE participants with those who have never participated in the programs in the following variables: exact match on building type (single family, multi-family, condo,
etc), vintage bins, climate zone, square footage percentile (only for single and multi-family housing), also fuzzy nearest distance matching on census block group level
variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching covariates are
from the census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. % of ownership % of occupancy
rate, and also variables at the account level including, whether homeowner or not, geographic location—XY coordinates, whether the household is registered under
CARE/FERA–energy discount programs for low income households, and whether the household is identified as having a pool or not. Mean pretreatment electricity
consumption is 710 kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors are clustered at the building
level.
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Table A3: Impact of Energy Efficiency Programs on Electricity Usage (Adding Time Trend)

2010-2014 2010-2014 2010-2014 2010-2014
VARIABLES log(usage) log(usage) log(usage) log(usage)

No Time Trend Linear Time Trend Quadratic Time Trend Cubic Time Trend
(1) (2) (3) (4)

Appliance 0.0255*** 0.0226*** 0.0249*** 0.0245***
(0.0043) (0.0044) (0.0044) (0.0044)

Consumer Electronics -0.0108 -0.0109 -0.0058 -0.0093
(0.0285) (0.0285) (0.0286) (0.0285)

HVAC -0.0030 -0.0057* -0.0052* -0.0048*
(0.0029) (0.0029) (0.0029) (0.0029)

Lighting -0.0042 -0.0072*** -0.0072*** -0.0076***
(0.0026) (0.0026) (0.0026) (0.0026)

Pool Pump -0.1266*** -0.1296*** -0.1294*** -0.1293***
(0.0023) (0.0023) (0.0023) (0.0023)

Refrigeration -0.0617*** -0.0651*** -0.0662*** -0.0667***
(0.0009) (0.0009) (0.0009) (0.0009)

Water Heating -0.0135*** -0.0127*** -0.0180*** -0.0213***
(0.0030) (0.0030) (0.0030) (0.0030)

Audits -0.0268*** -0.0303*** -0.0271*** -0.0281***
(0.0010) (0.0010) (0.0010) (0.0010)

Whole House Retrofit 0.0147** 0.0120* 0.0149** 0.0146**
(0.0065) (0.0065) (0.0065) (0.0065)

Building Shell 0.0197** 0.0168** 0.0194*** 0.0193**
(0.0085) (0.0085) (0.0085) (0.0085)

Other -0.0432*** -0.0466*** -0.0480*** -0.0467***
(0.0007) (0.0007) (0.0007) (0.0007)

Household and county-year-month fixed effect No No No No
Household and city-time fixed effect No No No No
Household-month fixed effects Yes Yes Yes Yes
Month-year fixed effects Yes Yes Yes Yes
Observations 51,441,373 51,441,373 51,441,373 51,441,373
R-squared 0.9009 0.9009 0.9009 0.901

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from four
separate regressions. The coefficients of interest are indicator variables for households who have participated in the EE upgrade
financial incentive programs for that specific product (i.e. Lighting, HVAC, etc.). In all regressions, the dependent variable
is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching EE
participants with those who have never participated in the programs in the following variables: exact match on building type
(single family, multi-family, condo, etc), vintage bins, climate zone, square footage percentile (only for single and multi-family
housing), also fuzzy nearest distance matching on census block group level variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching covariates are from the
census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. %
of ownership % of occupancy rate, and also variables at the account level including, whether homeowner or not, geographic
location—XY coordinates, whether the household is registered under CARE/FERA–energy discount programs for low income
households, and whether the household is identified as having a pool or not. Mean pretreatment electricity consumption is 710
kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors are
clustered at the building level.
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Table A4: Impact of EE Programs on Electricity Usage (Robustness Check)

Main result Robustness check

2010-2014 2010-2014 2010-2014 2010-2014
VARIABLES log(usage) log(usage) log(usage) log(usage)

(1) (2) (3) (4)

Appliance 0.0255*** 0.0255*** 0.0244*** 0.0245***
(0.0043) (0.0043) (0.0042) (0.0042)

Consumer Electronics -0.0108 -0.0107 -0.0100 -0.0078
(0.0285) (0.0286) (0.0285) (0.0275)

HVAC -0.0030 -0.0031 -0.0045 -0.0049*
(0.0029) (0.0029) (0.0028) (0.0028)

Lighting -0.0042 -0.0042 -0.0026 -0.0073***
(0.0026) (0.0026) (0.0026) (0.0025)

Pool Pump -0.1266*** -0.1266*** -0.1311*** -0.1297***
(0.0023) (0.0023) (0.0023) (0.0023)

Refrigeration -0.0617*** -0.0616*** -0.0611*** -0.0663***
(0.0009) (0.0009) (0.0009) (0.0009)

Water Heating -0.0135*** -0.0134*** -0.0132*** -0.0197***
(0.0030) (0.0029) (0.0029) (0.0028)

Audits -0.0268*** -0.0270*** -0.0264*** -0.0283***
(0.0010) (0.0010) (0.0010) (0.0009)

Whole House Retrofit 0.0147** 0.0138** 0.0136** 0.0144**
(0.0065) (0.0065) (0.0064) (0.0063)

Building Shell 0.0197** 0.0196** 0.0199** 0.0192**
(0.0085) (0.0085) (0.0085) (0.0082)

Other -0.0432*** -0.0432*** -0.0406*** -0.0476***
(0.0007) (0.0007) (0.0007) (0.0007)

HH-month fixed effects Yes Yes Yes No
Month-year fixed effects Yes Yes Yes No
Dropping month of replacement No Yes No No
Dropping those with solar panel No No Yes No
Including only participating households No No No Yes
Observations 51,441,373 51,441,373 51,230,000 33,437,192
R-squared 0.9009 0.9009 0.9029 0.8851

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from seven
separate regressions. The coefficients of interest are indicator variables for households who have participated in the EE upgrade
financial incentive programs for that specific product (i.e. Lighting, HVAC, etc.). In all regressions, the dependent variable
is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching EE
participants with those who have never participated in the programs in the following variables: exact match on building type
(single family, multi-family, condo, etc), vintage bins, climate zone, square footage percentile (only for single and multi-family
housing), also fuzzy nearest distance matching on census block group level variables, such as median income, density, poverty,
white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching covariates are from the
census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. %
of ownership % of occupancy rate, and also variables at the account level including, whether homeowner or not, geographic
location—XY coordinates, whether the household is registered under CARE/FERA–energy discount programs for low income
households, and whether the household is identified as having a pool or not. Mean pretreatment electricity consumption is 710
kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors are
clustered at the building level.
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Table A5: Impact of EE Programs on 2010-2014 Electricity Usage (without controlling for overlapping retrofits)

Main result Without controlling for other retrofits
2010-2014 2010-2014 2010-2014 2010-2014 2010-2014 2010-2014 2010-2014 2010-2014 2010-2014 2010-2014 2010-2014 2010-2014

VARIABLES log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage) log(usage)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Appliance 0.0255*** 0.0237***
(0.0043) (0.0035)

Consumer Electronics -0.0108 -0.0204
(0.0285) (0.0282)

HVAC -0.0030 -0.0023
(0.0029) (0.0029)

Lighting -0.0042 -0.0082***
(0.0026) (0.0017)

Pool Pump -0.1266*** -0.1249***
(0.0023) (0.0024)

Refrigeration -0.0617*** -0.0583***
(0.0009) (0.0009)

Water Heating -0.0135*** -0.0247***
(0.0030) (0.0014)

Audits -0.0268*** -0.0213***
(0.0010) (0.0014)

Whole House Retrofit 0.0147** 0.0168**
(0.0065) (0.0066)

Building Shell 0.0197** 0.0213**
(0.0085) (0.0087)

Other -0.0432*** -0.0403***
(0.0007) (0.0007)

HH-month fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373 51,441,373
R-squared 0.9009 0.9006 0.9006 0.9006 0.9006 0.9007 0.9007 0.9006 0.9006 0.9006 0.9006 0.9007

Note: *** p<0.01, ** p<0.05, * p<0.1; This table reports coefficient estimates and standard errors (in parentheses) from seven separate regressions. The coefficients
of interest are indicator variables for households who have participated in the EE upgrade financial incentive programs for that specific product (i.e. Lighting, HVAC,
etc.). In all regressions, the dependent variable is the natural log of 2010-2014 monthly electricity consumption in kilowatt hours. Estimations are based on matching
EE participants with those who have never participated in the programs in the following variables: exact match on building type (single family, multi-family, condo,
etc), vintage bins, climate zone, square footage percentile (only for single and multi-family housing), also fuzzy nearest distance matching on census block group level
variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. % of ownership % of occupancy rate; Other matching covariates are
from the census block group level variables, such as median income, density, poverty, white, black, Asian, Hispanic, education, age. % of ownership % of occupancy
rate, and also variables at the account level including, whether homeowner or not, geographic location—XY coordinates, whether the household is registered under
CARE/FERA–energy discount programs for low income households, and whether the household is identified as having a pool or not. Mean pretreatment electricity
consumption is 710 kilowatt hours per month for households who have ever participated in the energy efficiency programs. Standard errors are clustered at the building
level.
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Appendix B: Program Details

Program data were gathered separately under 2010-2012 and 2013-2015 cycles. Because the

2010-2012 program data came from the CPUC, there was a specific program code in the

raw data to distinguish which program each claim comes from. However, that program code

information was not provided with the 2013-2015 program data which we received directly

from SCE, so we do not have a clean categorization for those 2013-2015 programs.

Retrofit products may be offered through various implementation strategies. The upgrade

may be through different types of financial incentives, such as free or a certain percentage

of cost sharing (i.e. rebate). The financial incentives can go to different receivers (i.e. up-

stream/mid-stream at the contractor/distributor level or down-stream at the end-user level),

or through a so-called “direct install” from SCE’s highly-skilled contractors.

Additional support to promote energy efficiency upgrade could be provided by local

partnership programs, such as the Desert Cities Energy Leader Partnership and the Palm

Desert Demonstration Partnership programs (PPDP). In the PPDP program, administra-

tors reached out to the community through various marketing channels, including websites,

local newspapers and newsletters, television and radio advertisements, and flyers, to pro-

mote adoption of various products, including HVAC, lighting, and pool pumps. The PPDP

program also provides free/give away products to improve program uptake.

Some other important SCE programs that focus on improving energy efficiency specifi-

cally in residential buildings are:

• Home Energy Efficiency Rebate (HEER) Program and the Multifamily Energy Effi-

ciency Rebate Program provide rebates for various products, such as HVAC, lighting,

pool pump, water heating, and fridge, for single family and multifamily owners. HEER

is the largest residential program based on expenditures (CPUC 2015).

• Appliance Recycling Program (ARP) provides free pick-up service and rebate incentives

for eligible appliances, mostly refrigerators and freezers. The Comprehensive Mobile

Home focuses on mobile home owners and provides direct install for EE products at

no charge.

• There are also residential HVAC programs, such as ENERGY STAR Residential Qual-

ity Installation Program and Residential Quality Maintenance and Commercial Quality
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Maintenance Development programs that address HVAC installation and maintenance

practice.

• Home Energy Efficiency Survey Program provides information to enhance people’s

understanding and knowledge of energy usage and efficiency, and include free light

bulbs and water saving kits (ex: low flow showerhead, faucet aerator, etc). This is

where most water saving upgrade products come from.

• The whole house retrofit mainly comes from the California Statewide Program for Res-

idential Energy Efficiency, so-called Energy Upgrade California (EUC) program. EUC

program provides incentives to single-family and multi-family dwellings to comprehen-

sive whole house retrofits. This program links SCE customers with a participating

program contractor to install eligible EE measures with incentives up to $6500 per

home. In 2015, SCE attempted to improve the performance of this program by adding

a residential HVAC quality installation component, implementing collaborative quality

control between contractors, partnering with lighting innovation program to give free

LED lights, partnering with Home Energy Report to improve savings, etc. Some focus

on the new construction homes through the so-called California Advanced Homes Pro-

gram (CAHP), which is part of the statewide Residential New Construction (RNC)

programs. CAHP incentivizes single-family and multi-family home builders to build

energy efficient homes exceeding California’s Title 24 building energy efficiency stan-

dard by at least 15 percent. These upstream financial incentives were given to home

builders based on the program score generated by the title 24 energy modeling software.
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